
11  

INTRODUCING CSS

OVERVIEW

• The benefits of CSS

• Understanding
document structure

• Writing style rules

• Attaching styles to
the HTML document

• Inheritance

• The cascade

• The box model

• CSS units of
measurement

The Benefits of CSS

• Precise type and layout control

• Less work: Change look of the whole site with one edit

• Accessibility: Markup stays semantic

• Flexibility: The same HTML markup can be made to appear
in dramatically different ways

Style Separate from Structure
These pages have the exact same HTML source but different

style sheets:

(csszengarden.com)

How Style Sheets Work

1. Start with a marked up document (like HTML, but could be
another XML markup language).

2. Write styles for how you want elements to look using CSS
syntax.

3. Attach the styles to the document (there are a number of
ways).

4. The browser uses your instructions when rendering the
elements.

Style Rules

Each rule selects an element and declares how it should display.

h1 { color: green; }

This rule selects all h1 elements and declares that they should
be green.

strong { color: red; font-style: italic; }

This rule selects all strong inline elements and declares that
they should be red and in an italic font.

Style Rule Structure

• A style rule is made up of a selector a declaration.

• The declaration is one or more property / value pairs.

Selectors

There are many types of selectors. Here are just two examples:

p {property: value;}

Element type selector: Selects all elements of this type (p) in the
document.

#intro {property: value}

ID selector (indicated by the # symbol) selects by ID value. In
the example, an element with an id of “intro” would be selected.

Declarations

The declaration is made up of a property/value pair contained
in curly brackets { }:

selector { property: value; }

Example

h2 { color: red;
 font-size: 2em;
 margin-left: 30px;
 opacity: .5;
 }

Declarations (cont’d)

• End each declaration with a semicolon to keep it separate from
the next declaration.

• White space is ignored, so you can stack declarations to make
them easier to read.

• Properties are defined in the CSS specifications.

• Values are dependent on the type of property:
• Measurements
• Keywords
• Color values
• More

CSS Comments

/* comment goes here */

• Content between /* and */ will be ignored by the browser.

• Useful for leaving notes or section labels in the style sheet.

• Can be used within rules to temporarily hide style
declarations in the design process.

Adding Styles to the Document

There are three ways to attach a style sheet to a document:

External style sheets
A separate, text-only .css file associated with the document with the
link element or @import rule

Embedded style sheets
Styles are listed in the head of the HTML document in the style
element.

Inline styles
Properties and values are added to an individual element with the
style attribute.

External Style Sheets
The style rules are saved in a separate text-only .css file and
attached via link or @import.

Via link element in HTML:
<head>
 <title>Titles are require</title>
 <link rel="stylesheet" href="/path/example.css">
</head>

Via @import rule in a style sheet:
<head>
 <title>Titles are required</title>
 <style>
 @import url("/path/example.css");
 p {font-face: Verdana;}
 </style>
</head>

Embedded Style Sheets

Embedded style sheets are placed in the head of the document
via the style element:

<head>
 <title>Titles are required</title>
 <style>
 /* style rules go here */
 </style>
</head>

Inline Styles

Apply a style declaration to a single element with the style
attribute:

<p style="font-size: large;">Paragraph text...</p>

To add multiple properties, separate them with semicolons:

<h3 style="color: red; margin-top: 30px;">Intro</h3>

Document Structure

Documents have an implicit structure.

We give certain relationships names, as if they’re a family:

• All the elements contained in a given element are its
descendents.

• An element that is directly contained within another
element is the child of that element.

• The containing element is the parent of the contained
element.

• Two elements with the same parent are siblings.

Inheritance

• Many properties applied to elements are passed down to the
elements they contain. This is called inheritance.

• For example, applying a sans-serif font to a p element causes
the em element it contains to be sans-serif as well:

Inheritance (cont’d)

• Some properties inherit; others do not.  
Properties related to text usually inherit; properties related to
layout generally don’t.

• Styles explicitly applied to specific elements override
inherited styles.

• You’ll learn to use inheritance strategically to keep your style
rules simple.

The Cascade
• The cascade refers to the system for resolving conflicts when

several styles apply to the same element.

• Style information is passed down (it “cascades” down) until
overwritten by a style rule with more weight.

• Weight is considered based on:

• Priority of style rule source

• Specificity of the selector

• Rule order

The Cascade: Priority

Style rules from sources higher in this list override rules from
sources listed below them.

• Any style marked as !important by the user (to
accommodate potential accessibility settings)

• Any style marked !important by the author (of the web page)

• Author styles (style sheets created in web site production)

• User styles (added by the reader)

• User agent styles (browser defaults)

The Cascade: Specificity

• When two rules in a single style sheet conflict, the type of
selector is used to determine which rule has more weight.

• For example, ID selectors are more specific than general
element selectors.

NOTE: Specificity will be discussed once we have covered more
selector types.

The Cascade: Rule Order

• When two rules have equal weight, rule order is used.
Whichever rule appears last “wins.”

<style>
 p {color: red;}
 p {color: blue;}
 p {color: green;}
</style>

In this example, paragraphs would be green.

• Styles may come in from external style sheets, embedded
style rules, and inline styles. The style rule that gets parsed
last (the one closest to the content) will apply.

The Box Model
Browsers see every element on the page as being contained in
a little rectangular box. Block elements and inline elements
participate in the box model.

In this example, a blue border is added to all elements.

The Box Model (cont’d)

• The box model is the foundation of CSS page layout.

• Apply properties such as borders, margins, padding,
and backgrounds to element boxes.

• Position, move, grow, and shrink boxes to create fixed
or flexible page layouts.

CSS Units of Measurement

CSS provides a variety ways to specify measurements:

Absolute units
Have predefined meanings or real-world equivalents

Relative units
Based on the size of something else, such as the default text
size or the size of the parent element

Percentages
Calculated relative to another value, such as the size of the
parent element

Absolute Units

With the exception of pixels, absolute units are not appropriate
for web design:

px pixel
in inches
mm millimeters
cm centimeters
q 1/4 millimeter
pt points (1/72 inch)
pc pica (1 pica = 12 points = 1/6 inch)

Relative Units
Relative units are based on the size of something else:

em a unit equal to the current font size
ex x-height, equal to the height of a lowercase x
rem root em, equal to the font size of the html element
ch zero width, equal to the width of a zero (0)
vw viewport width unit (equal to 1/100 of viewport width)
vh viewport height unit (1/100 of viewport height)
vmin viewport minimum unit (value of vh or vw, whichever is smaller)
vmax viewport maximum unit (value of vh or vw, whichever is larger)

RELATIVE UNITS

The rem Unit

• The rem (root em) unit is based on the font size of the html
element, whatever that happens to be.

• Default in modern browsers: Root font size is 16 pixels, so a
rem = a 16-pixel unit.

• If the root font size of the document changes, so does the
size of a rem (and that’s good for keeping elements
proportional).

RELATIVE UNITS

The em Unit

• The em unit is traditionally based on the width of a capital letter
M in the font.

• When the font size is 16 pixels,1em = 16 pixels, 2em = 32
pixels, and so on.

NOTE: Because they’re based on the font size of the current element, the
size of an em may not be consistent across a page.

RELATIVE UNITS

Viewport Percentage Lengths (vw/vh)

Viewport width (vw) and viewport height (vh) units are relative to
the size of the viewport (browser window):

vh = 1/100th width of viewport

vh = 1/100th height of viewport

They’re useful for making an element fill the viewport or a
specified percentage of it. This image will be 50% the width and
height of the viewport:

img { width: 50vw; height: 50vh; }

Browser Developer Tools

Major browsers have built-in tools that aid development:

• HTML, CSS, and JavaScript inspectors

• Network speed reports

• Animation tools

• Other helpful features

Browser Developer Tools (cont’d)

Chrome DevTools (View > Developer > Developer Tools)

Firefox, Safari, Opera, and Microsoft Edge also have developer tools.

