
19  

MORE CSS TECHNIQUES

OVERVIEW

• Styling forms

• Style properties for tables

• CSS reset and normalizer

• Image replacement techniques

• CSS feature detection

Styling Forms
Use standard color, background, font, and box properties. Flexbox
is a good tool for making the form adapt to available viewport
space.

• Text inputs  
Change the appearance of the box with box properties. Style the
text inside the box with color and various font properties.

• textarea  
Change font and line-height of text field. Prevent resizing with
resize: none;.

• Buttons (submit, reset, button)  
Use box and font properties. Note that the default is border-box
sizing with padding applied.

Styling Forms (cont’d)

• Radio and checkbox buttons  
Best practice is to leave them alone (or substitute your own
JavaScript custom buttons).

• Drop-down and select menus (select) 
Specify the width and height. Best practice is to leave the
option formatting to the browser. Some allow you to style the
option text.

• Fieldsets and legends  
Apply box properties to fieldset. The legend element is
difficult to style (try styling a span inside the legend element
instead).

Styling Tables
To add space within a cell, apply the padding property to td or th.

To add space between cells, use the border-collapse and border-
spacing properties.

border-collapse

Values: separate, collapse

separate allows space between cells. collapse combines borders
with no space.

border-spacing

Values: Horizontal-length vertical-length

Specifies an amount of space between columns and rows when
border-collapse is set to separate

Styling Tables (cont’d)

Styling Tables (cont’d.)

empty-cells

Values: show, hide
When borders are separate, this property indicates whether empty
cells display their backgrounds and borders.

caption-side

Values: top, bottom
Specifies on which side the caption element displays.

table-layout

Values: auto, fixed
Calculates the width of the table based on width values (fixed) or the
minimum width required for the content of the table (auto).

“A Clean Slate” with CSS Reset
A CSS reset is a collection of styles that overrides all user agent styles
(browser defaults) and gives you a neutral starting point for your own
styles.

Example: An excerpt from Eric Meyer’s CSS Reset that removes margins,
padding, and borders and sets the font to 100% for all elements:

/* http://meyerweb.com/eric/tools/css/reset/
 v2.0 | 20110126 License: none (public domain)*/
html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, /*... MORE ELEMENTS...*/ section, summary,
time, mark, audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
/* Styles continue... */

Normalize.css
Normalize.css is a reset style sheet that retains some initial browser
styles but tweaks them for consistency across browsers. It prevents
needing to write styles for every element.

Image Replacement Techniques (IRT)

IRT replaces text with an image (like a logo) while ensuring it’s
accessible to screen readers and search engines.

There are many techniques. The “Phark” method is popular:

1. Put the image in the background of the sized text
element.

2. Move the text itself out of the browser window with a large
negative text-indent.

NOTE: Consider whether the alt attribute on an img element may
suffice before using an IRT.

Phark Image Replacement Technique

The markup:

<h1 id="logo">Jenware</h1>

The style rule:

#logo {
 width: 450px;
 height: 80px;
 background: url(jenware.png) no-repeat;
 text-indent: -9999px;
}

CSS Sprites
• A sprite is an image file that contains multiple images.

• Putting many small images in one image file reduces calls to the
server and improves performance.

• Use the image as a background image and control which
portion of it is visible with the background-position property:

li a {
 display: block;
 width: 40px;
 height: 40px;
 background-image: url(social.png);
}
li a.twitter { background-position: 0 0;}
li a.fb { background-position: 0 -40px;}
li a.gplus { background-position: 0 -80px;}
li a.linkedin { background-position: 0 -120px; }
li a.dropbox { background-position: 0 -160px; }
li a.pinterest { background-position: 0 -200px; }

CSS Sprites (cont’d)

CSS Feature Detection

It takes a while for new CSS features to be supported in all
browsers. Feature detection lets you test for support of a
particular feature and provide appropriate fallbacks for non-
supporting browsers.

Two common detection methods:

• CSS feature queries (@supports rule)

• Modernizr (JavaScript library)

NOTE: In the past, styles were delivered based on the browser version.
Testing for individual features is a better approach.

CSS Feature Queries (@supports)

A @supports rule tests for support of a particular property and
value pair. If the browser passes, the rules inside the brackets
are applied:

@supports (property: value) {
 /* Style rules for supporting browsers here */
}

TIP: Provide fallback styles for non-supporting browsers first and
then override them with the preferred rules.

CSS Feature Queries (cont’d)

The mix-blend-mode property is
specified for browsers that support it.
Other browsers get a similar effect with
the widely supported opacity property.

#container {
 background-color: #96D4E7;
 padding: 5em;
}
.blend img {
 opacity: .5;
}
@supports (mix-blend-mode: multiply) {
 .blend img {
 mix-blend-mode: multiply;
 opacity: 1;
 }
}

CSS Feature Queries (cont’d)

PROS:

• Doesn’t rely on JavaScript

• Can take advantage of cutting-edge properties safely

CONS:

• Limited browser support (for now)

• CAUTION: Some browsers that don’t support feature queries do
support newer properties you might test for (for example, Flexbox).
The new properties won’t apply if they are in an unsupported
@supports rule.

NOTE: Feature queries are a great way to test for Grid support.

Modernizr

A JavaScript library that tests for HTML5 and CSS3 features.

It indicates the result (support or no support) with a class name
applied to the html element (and in a JavaScript object for scripting):

<html class="js flexbox">
<html class="js no-flexbox">

Use the generated class name in the selector to separate styles for
supporting and non-supporting browsers:

.flexbox nav {
 /* flexbox styles for the nav element here */
}

.no-flexbox nav {
 /* fallback styles for the nav element here */
}

Modernizr (cont’d.)

1. Go to modernizr.com to build and download the Modernizer.js script. 
(NOTE: You can customize the script to test for just the features you
need.)

2. Put the Modernizer.js file in the same directory a the files for your site.

3. Add the script to the head of the HTML document, before linked style
sheets or other scripts.

4. Add class="no-js" to the html element (it gets overwritten if there
is JavaScript):

<html class="no-js">
<head>
 <script src="modernizr-custom.js"></script>
 <!--other scripts and style sheets -->
</head>

http://modernizr.com

Modernizr (cont’d)

PROS:

• Easy to use, with thorough documentation

• Excellent browser support

CONS:

• Relies on JavaScript (which may not be enabled)

• Slightly slower than CSS feature queries

