
18  

TRANSITIONS, TRANSFORMS,
AND ANIMATION

OVERVIEW

• Creating smooth transitions

• Moving, rotating, and scaling elements

• Combining transitions and transforms

• 3-D transforms

• Keyframe animation overview

CSS Transitions

• CSS transitions create a smooth
change from one state to another.

• They fill in the frames in between
(tweening).

• Example: Gradually changing a
button from red to blue (through
purple) when the mouse pointer
hovers over it. 
State 1: Default 
State 2: When the mouse is over
the element

Transition Properties

transition-property  
Which CSS property to change

transition-duration  
How long the transition should take in seconds (or milliseconds)

transition-timing-function  
The manner in which the transition accelerates

transition-delay  
Whether there should be a pause before the transition starts and
how long that pause should be (in seconds)

Specifying the Property
transition-property

Values: Property-name, all, none

Identifies the property that will receive a transition when it changes
state.

Here, we want to smooth out the change in background color when
the color changes from hovering or focus:

.smooth {
 ...
 color: #fff;
 background-color: mediumblue;
 transition-property: background-color;
}
.smooth:hover, .smooth:focus {
 background-color: red;
}

Defining Duration
transition-duration

Values: Time

Identifies how much time the transition will take. It’s usually
specified in seconds (s) or milliseconds (ms).

In this example, the transition from blue to red takes .3 seconds:

.smooth {
 ...
 color: #fff;
 background-color: mediumblue;
 transition-property: background-color;
 transition-duration: .3s;
}
.smooth:hover, .smooth:focus {
 background-color: red;
}

Timing Functions
transition-timing-function

Values: ease, linear, ease-in, ease-out, ease-in-out,
step-start, step-end, steps, cubic-bezier(#,#,#,#)

• The timing function describes the way the transition
accelerates or decelerates over time.

• It has a big impact on the feel and believability of the
animation.

• The default is ease, which starts slowly, accelerates quickly,
then slows down again at the end.

Timing Functions (cont’d)

• linear: Stays consistent from beginning to end, feels mechanical

• ease-in: Starts slowly, then speeds up

• ease-out: Starts quickly, then slows down

• ease-in-out: Similar to ease, but with less acceleration in the middle

• cubic-bezier(#,#,#,#): Defines a curve that plots acceleration

• steps(#, start or end): Divides the animation into a number of
steps. The start and end keywords indicate whether that transition
happens at the beginning or end of each step.

• step-start: Changes states in one step, at the beginning of the
duration time

• step-end: Changes states in one step, at the end of the duration time

Cubic Bezier Curves

• Acceleration can be plotted using a Bezier curve.

• Steep sections indicate quick rate of change; flat parts
indicate slow rate of change.

• The curve is defined  
by the x,y coordinates 
of “handles” that  
control the curve.

Cubic Bezier Curves for Keywords
The curves for transition-timing-function  

keyword values:

Transition Delay
transition-delay

Values: Time

Delays the start of the transition by the amount of time specified.

In this example, the transition will begin .2 seconds after the user hovers
over the element:

.smooth {
 ...
 color: #fff;
 background-color: mediumblue;
 transition-property: background-color;
 transition-duration: .3s;
 transition-timing-function: ease-in-out;
 transition-delay: 0.2s;
}
.smooth:hover, .smooth:focus {
 background-color: red;
}

Shorthand transition Property
transition

Values: property duration timing-function delay

Combines all the transition properties into one declaration.
Values are separated by character spaces.

The duration time must appear before delay time.

.smooth {
 ...
 color: #fff;
 background-color: mediumblue;
 transition: background-color .3s ease-in-out 0.2s;
}

Transitioning Multiple Properties

• You can set the transitions for multiple properties with one
declaration.

• Separate value sets with commas.

• This declaration smoothes out the changes in background
color, color, and letter spacing of an element:

.smooth {
 …
 transition: background-color 0.3s ease-out 0.2s,
 color 2s ease-in,
 letter-spacing 0.3s ease-out;
}

Making All Transitions Smooth

If you want the same duration, timing-function, and delay
for all your transitions, use the all keyword for
transition-property:

.smooth {
 …
 transition: all 0.2s ease-in-out;
}

CSS Transforms
transform

Values: rotate(), rotateX(), rotateY(), translate(),
translateX(), translateY(), scale(), scaleX(), scaleY(),
skew(), skewX(), skewY(), none

The transform property changes the shape and location of an
element when it initially renders. It is not animated but can be
with transitions.

Transforming the Angle (rotate)

Use the rotate() function as the value of transform to rotate
the element at a given angle:

img {
 width: 400px;
 height: 300px;
 transform: rotate(-10deg);
}

Transform Origin
transform-origin

Values: Percentage, length, left, center, right, top,
bottom

The point around which an element is transformed, defined by
horizontal and vertical offsets.

Transforming Position (translate)

• Use the translate() function as the value of transform
to render an element at a new location.

• The values are an x-offset and a y-offset. When you provide
one value, it’s used for both axes.

Transforming Size (scale)
• Use the scaleX(), scaleY(), or scale function to change

the size at which an element renders.

• The value is a unitless number that specifies a size ratio.

• The scale() shorthand provides x-offset and y-offset values
(providing one value applies to both axes).

Transforming Slant (skew)
• Use the skewX(), skewY(), or skew function to change the angle

of the horizontal or vertical axes (or both).

• The value is the number of degrees the angle should be.

• The skew() shorthand provides x-offset and y-offset values
(providing one value applies it to the x-axis only).

Multiple Transforms

You can apply more than one transform type in a declaration:
img:hover, img:focus {
 transform: scale(1.5) rotate(-5deg) translate(50px,30px);
}

They’re applied in the order in which they’re listed. Order
matters in the final result.

NOTE: If you apply a transform on an element in a different state (for
example, :hover), repeat all transforms applied so far to that element
or they will be overwritten.

Smoothing Out Transformations

Smooth out a transform using the transition property.

Example:
Make an element appear to rotate smoothly when the mouse
moves over it or when it’s in focus:

a:hover img.twist, a:focus img.twist {
 transform: rotate(-5deg);
}
img.twist {
 transition-property: transform;
 transition-duration: .3s;
}

3-D Transforms

You can apply perspective to element boxes to make them
appear as though they’re in a 3-D space.

3-D Transforms (cont’d)

• Apply the perspective property to the containing element
(the lower the value, the more extreme the perspective):
ul {
 ...
 perspective: 600;
{

• Apply one of the 3-D transform functions to each child
element:
li {
 ...
 transform: rotateX(45deg);
{

Intro to Keyframe Animation

Keyframe animation enables you to create
transitions between a series of states
(keyframes):

1. Establish the keyframes with a
@keyframes rule:
@keyframes animation-name {
 keyframe { property: value; }
 /* additional keyframes */
}

2. Apply animation properties to the
element(s) that will be animated.

Intro to Keyframe Animation (cont’d)

Keyframes establish colors at each
point in the animation and give the
sequence a name (“rainbow"):

@keyframes rainbow {
 0% { background-color: red; }
20% { background-color: orange; }
40% { background-color: yellow; }
60% { background-color: green; }
80% { background-color: blue; }
100% { background-color:
purple; }
}

The animation properties are applied
to the animated element (including
which keyframe sequence to use):

#magic {
 …
 animation-name: rainbow;
 animation-duration: 5s;
 animation-timing-function:
linear;
 animation-iteration-count:
infinite;
 animation-direction: alternate;
}

