
16B  

CSS LAYOUT WITH GRID

OVERVIEW

• Grid terminology

• Grid display type

• Creating the grid template

• Naming grid areas

• Placing grid items

• Implicit grid behavior

• Grid spacing and alignment

How CSS Grids Work

1. Set an element’s display to grid to establish a grid
container. Its children become grid items.

2. Set up the columns and rows for the grid (explicitly or with
rules for how they are created on the fly).

3. Assign each grid item to an area on the grid (or let them flow
in automatically in sequential order).

Grid Terminology

Creating a Grid Container

To make an element a grid container, set its display property
to grid.

All of its children automatically become grid items.
The markup

<div id="layout">
 <div id="one">One</div>
 <div id="two">Two</div>
 <div id="three">Three</div>
 <div id="four">Four</div>
 <div id="five">Five</div>
</div>

The styles
#layout {
 display: grid;
}

Defining Row and Column Tracks
grid-template-rows

grid-template-columns

Values: none, list of track sizes and optional line names

• The value of grid-tempate-rows is a list of the heights of each row
track in the grid.

• The value of grid-template-columns is a list of the widths of each
column track in the grid.

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 500px 200px;
}

• The number of sizes provided determines the number of rows/columns
in the grid. This grid in the example above has 3 rows and 3 columns.

Grid Line Numbers
Browsers assign a number to every grid line automatically,
starting with 1 from the beginning of each row and column track
and also starting with –1 from the end.

Grid Line Names

You can also assign names to lines to make them more
intuitive to reference later.

Grid line names are added in square brackets in the position
they appear relative to the tracks.

To give a line more than one name, include all the names in
brackets, separated by spaces.

#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [header-end content-start]
400px [content-end footer-start] 100px;
 grid-template-columns: [ads] 200px [main] 500px [links] 200px;
}

Track Size Values

The CSS Grid spec provides a lot of ways to specify the width and
height of a track. Some of these ways allow tracks to adapt to
available space and/or to the content they contain:

• Lengths (such as px or em)

• Percentage values (%)
• Fractional units (fr)
• minmax()

• min-content, max-content
• auto

• fit-content()

Fractional Units (fr)
The Grid-specific fractional unit (fr) expands and contracts
based on available space:

#layout {
 display: grid;
 grid-template-rows: 100px 400px 100px;
 grid-template-columns: 200px 1fr 200px;
}

Size Range with minmax()

• The minmax() function constricts the size range for the track
by setting a minimum and maximum dimension.

• It’s used in place of a specific track size.

• This rule sets the middle column to at least 15em but never
more than 45em:

grid-template-columns: 200px minmax(15em, 45em) 200px;

min-content and max-content
min-content is the smallest that a track can be.

max-content allots the maximum amount of space needed.

auto lets the browser take care of it. Start with auto for content-
based sizing.

Repeating Track Sizes

The shortcut repeat() function lets you repeat patterns in
track sizes:

repeat(#, track pattern)

The first number is the number of repetitions. The track sizes
after the comma provide the pattern:

BEFORE: 
grid-template-columns: 200px 20px 1fr 20px 1fr 20px 1fr 20px
1fr 20px 1fr 20px 1fr 200px;

AFTER:  
grid-template-columns: 200px repeat(5, 20px 1fr) 200px;

(Here repeat() is used in a longer sequence of track sizes.  
It repeats the track sizes 20px 1fr 5 times.)

Repeating Track Sizes (cont’d.)

You can let the browser figure out how many times a repeated
pattern will fit with auto-fill and auto-fit values instead of a
number:

grid-template-rows: repeat(auto-fill, 15em);

auto-fill creates as many tracks as will fit in the available
space, even if there’s not enough content to fill all the tracks.

auto-fit creates as many tracks as will fit, dropping empty
tracks from the layout.

NOTE: If there’s leftover space in the container, it’s distributed according
to the provided vertical and horizontal alignment values.

Giving Names to Grid Areas
grid-template-areas

Values: none, series of area names by row

• grid-template-areas lets you assign names to areas in
the grid to make it easier to place items in that area later.

• The value is a list of names for every cell in the grid, listed by
row.

• When neighboring cells share a name, they form a grid area
with that name.

Giving Names to Grid Areas (cont’d)
#layout {
 display: grid;
 grid-template-rows: [header-start] 100px [content-start] 400px
[footer-start] 100px;
 grid-template-columns: [ads] 200px [main] 1fr [links] 200px;
 grid-template-areas:
 "header header header"
 "ads main links"
 "footer footer footer"
}

Giving Names to Grid Areas (cont’d)
Assigning names to lines with -start and -end suffixes creates
an area name implicitly.

Similarly, when you specify an area name with grid-template-areas,
line names with -start and -end suffixes are implicitly generated.

The grid Shorthand Property
grid

Values: none, row info/column info

The grid shorthand sets values for grid-template-rows,
grid-template-columns, and grid-template-areas.

NOTE: The grid shorthand is available, but the word on the street is
that it’s more difficult to use than separate template properties.

The grid Shorthand Property (cont’d)

Put the row-related values before the slash (/) and column-
related values after:

grid: rows / columns

Example:
#layout {
 display: grid;
 grid: 100px 400px 100px / 200px 1fr 200px;
}

The grid Shorthand Property (cont’d)

You can include line names and area names as well, in this
order:
[start line name] "area names" <track size> [end line name]

Example:
#layout {
 display: grid;
 grid:
 [header-start] "header header header" 100px
 [content-start] "ads main links" 400px
 [footer-start] "footer footer footer" 100px
 / [ads] 200px [main] 1fr [links] 200px;
}

The names and height for each row are stacked here for clarity. Note
that the column track information is still after the slash (/).

Placing Items Using Grid Lines
grid-row-start
grid-row-end

grid-column-start
grid-column-end

Values: auto, "line name", span number, span "line name",
number "line name"

• These properties position grid items on the grid by
referencing the grid lines where they begin and end.

• The property is applied to the grid item element.

Placing Items on the Grid (cont’d)

By line number:
#one {
 grid-row-start: 1;
 grid-row-end: 2;
 grid-column-start: 1;
 grid-column-end: 4;
}

Using a span:
#one {
 ...
 grid-column-start: 1;
 grid-column-end: span 3;
}

Starting from the last grid line and
spanning backward:
#one {
 ...
 grid-column-start: span 3;
 grid-column-end: -1;
}

By line name:

#one {
 grid-row-start: header-start;
 grid-row-end: header-end;
 …
}

Placing Items on the Grid (cont’d)

grid-row
grid-column

Values: "start line” / “end line”

These shorthand properties combine the *-start and *-end
properties into a single declaration. Values are separated by a
slash (/):

#one {
 grid-row: 1 / 2;
 grid-column: 1 / span 3;
}

Placing Items on the Grid  
Using Areas

grid-area

Values: Area name, 1 to 4 line identifiers

Positions an item in an area created with grid-template-areas:

#one { grid-area: header; }
#two { grid-area: ads; }
#three { grid-area: main; }
#four { grid-area: links; }
#five { grid-area: footer; }

Implicit Grid Behavior

The Grid Layout system does some things for you automatically
(implicit behavior):

• Generating “-start” and “-end” line names when you name
an area (and vice versa)

• Flowing items into grid cells sequentially if you don’t
explicitly place them

• Adding rows and columns on the fly as needed to fit items

Automatically Generated Tracks
grid-auto-rows

grid-auto-columns

Values: List of track sizes

Provide one or more track sizes for automated tracks. If you
provide more than one value, it acts as a repeating pattern.

Example:

Column widths are set explicitly with a template, but columns will be
generated automatically with a height of 200 pixels:

grid-template-columns: repeat(3, 1fr);
grid-auto-rows: 200px;

Flow Direction and Density
grid-auto-flow

Values: row or column, dense (optional)

Specifies whether you’d like items to flow in by row or column.
The default is the writing direction of the document.

Example:
#listings {
 display: grid;
 grid-auto-flow: column dense;
}

Flow Direction and Density (cont’d)

The dense keyword instructs the browser to fill in the grid as
densely as possible, allowing items to appear out of order.

The Grid Property (Revisited)

Use the auto-flow keyword in the shorthand grid property to
indicate that the rows or columns should be generated automatically.

Example: 
Columns are established explicitly, but the rows generate
automatically. (Remember, row information goes before the slash.)

grid: auto-flow 200px / repeat(3, 1fr);

Because auto-flow is included with row information, grid-auto-
flow is set to row.

Spacing Between Tracks
grid-row-gap

grid-column-gap

Values: Length (must not be negative)

grid-gap

Values: grid-row-gap grid-column-gap

Adds space between the row and/or columns tracks of the grid

NOTE: These property names will be changing to row-gap, column-
gap, and gap, but the new names are not yet supported.

Space Between Tracks (cont’d)
If you want equal space between all tracks in a grid, use a gap
instead of creating additional spacing tracks:

grid-gap: 20px 50px;

(Adds 20px space between rows and 50px between columns)

Item Alignment
justify-self
align-self

Values: start, end, center, left, right, self-start,
self-end, stretch, normal, auto

When an item element doesn’t fill its grid cell, you can
specify how it should be aligned within the cell.

justify-self aligns on the inline axis (horizontal for L-to-R
languages).

align-self aligns on the block (vertical) axis.

Item Alignment (cont’d)

NOTE: These properties are applied to the individual grid item element.

Aligning All the Items
justify-items
align-items

Values: start, end, center, left, right, self-start,
self-end, stretch, normal, auto

These properties align items in their cells all at once. They are
applied to the grid container.

justify-items aligns on the inline axis.

align-items aligns on the block (vertical) axis.

Track Alignment
justify-content
align-content

Values: start, end, center, left, right, stretch,  
space-around, space-between, space-evenly

When the grid tracks do not fill the entire container, you can
specify how tracks align.

justify-content aligns on the inline axis (horizontal for L-to-
R languages).

align-content aligns on the block (vertical) axis.

Track Alignment (cont’d)

NOTE: These properties are applied to the grid container.

Grid Property Review
Grid container properties
display: grid | inline-grid
grid
 grid-template
 grid-template-rows
 grid-template-columns
 grid-template-areas
 grid-auto-rows
 grid-auto-columns
 grid-auto-flow
grid-gap
 grid-row-gap
 grid-column-gap
justify-items
align-items
justify-content
align-content

Grid item properties
grid-column
 grid-column-start
 grid-column-end
grid-row
 grid-row-start
 grid-row-end
grid-area
justify-self
align-self
order (not part of Grid Module)
z-index (not part of Grid Module)

