
16A  

CSS LAYOUT WITH FLEXBOX

OVERVIEW

• Flexbox terminology

• Flexbox containers

• Flow: Flow direction and text wrap

• Alignment on main and cross axes

• Specifying how items in a flexbox "flex"

• Changing the order of flex items

About Flexbox

• Flexbox is a display mode that lays out elements along
one axis (horizontal or vertical).

• Useful for menu options, galleries, product listings, etc.

• Items in a flexbox can expand, shrink, and/or wrap onto
multiple lines, making it a great tool for responsive layouts.

• Items can be reordered, so they aren't tied to the source
order.

• Flexbox can be used for individual components on a page
or the whole page layout.

Flexbox Container

display: flex

• To turn on Flexbox mode, set the element’s display to flex.

• This makes the element a flexbox container.

• All of its direct children become flex items in that container.

• By default, items line up in the writing direction of the
document (left to right rows in left-to-right reading languages).

Flexbox Container (cont’d)

Rows and Columns (Direction)
flex-direction

Values: row, column, row-reverse, column-reverse

The default value is row (for L-to-R languages), but you can change
the direction so items flow in columns or in reverse order:

Wrapping Flex Lines
flex-wrap

Values: wrap, nowrap, wrap-reverse

Flex items line up on one axis, but you can allow that axis to wrap
onto multiple lines with the flex-wrap property:

Flex Flow (Direction + Wrap)
flex-flow

Values: Flex-direction flex-flow
The shorthand flex-flow property specifies both direction and
wrap in one declaration.

Example
#container {
 display: flex;
 height: 350px;
 flex-flow: column wrap;
}

Flexbox Alignment Terminology

• Flexbox is “direction-agnostic,” so we talk in terms of main
axis and cross axis instead of rows and columns.

• The main axis runs in whatever direction the flow has been
set.

• The cross axis runs perpendicular to the main axis.

• Both axes have a start, end, and size.

ROW: Main and Cross Axes

COLUMN: Main and Cross Axes

Aligning on the Main Axis
justify-content

Values: flex-start, flex-end, center, space-between,
space-around

When there is space left over on the main axis, you can specify how
the items align with the justify-content property (notice we say
start and end instead of left/right or top/bottom).

The justify-content property applies to the flex container.

Example:

#container {
 display: flex;
 justify-content: flex-start;
}

Aligning on the Main Axis (cont’d)

When the direction is row, and the main axis is horizontal

Aligning on the Main Axis (cont’d.)

When the direction is column, and the main axis is vertical

NOTE: I needed to specify a height on the container to create extra space
on the main axis. By default, it’s just high enough to contain the content.

A WORD FROM THE AUTHOR

“Keeping the main and cross axes straight in your
mind when changing between rows and columns is

one of the trickiest parts of using Flexbox.
Once you master that, you’ve got it!”

—Jennifer Robbins

Aligning on the Cross Axis
align-items

Values: flex-start, flex-end, center, baseline, stretch

When there is space left over on the cross axis, you can specify how
the items align with the align-items property.

The align-items property applies to the flex container.

Example:

#container {
 display: flex;
 flex-direction: row;
 height: 200px;
 align-items: flex-start;
}

Aligning on the Cross Axis (cont’d)

When the direction is row, the main axis is horizontal, and
the cross axis is vertical.

NOTE: I needed to specify a height on the container to create extra space
on the cross axis. By default, it’s just high enough to contain the content.

Aligning on the CROSS Axis (cont’d)

align-self

Values: flex-start, flex-end, center, baseline, stretch

Aligns an individual item on the cross axis. This is useful if one or
more items should override the align-items setting for the
container.

The align-self property applies to the flex item.

Example:

.box4 {
 align-self: flex-end;
}

Aligning on the CROSS Axis (cont’d)
align-content

Values: flex-start, flex-end, center, space-around,
space-between, stretch

When lines are set to wrap and there is extra space on the cross
axis, use align-content to align the lines of content.

The align-content property applies to the flex container.

Aligning with Margins

Use a margin (set to auto) to put extra space on the side of
particular flex items.

Example: Adding an auto margin to the right of the first flex item
(the li with the logo) pushes the remaining li to the right:

ul {
 display: flex;
 align-items: center;
 ...
}
li.logo {
 margin-right: auto;
}

Specifying How Items “Flex”
flex

Values: none, 'flex-grow flex-shrink flex-basis'

• Items can resize (flex) to fill the available space on the main
axis in the container.

• The flex property identifies how much an item can grow and
shrink and identifies a starting size

• It distributes extra space in the container within items
(compared to justify-content that distributes space
between and around items).

flex Property Example

flex is a shorthand for separate flex-grow, flex-shrink, and
flex-basis properties.

The values 1 and 0 work like on/off switches.
li {
 flex: 1 0 200px;
}

In this example, list items in the flex container start at 200 pixels
wide, are permitted to expand wider (flex-grow: 1), and are not
permitted to shrink (flex-shrink: 0).

NOTE: The spec recommends always using the flex property and using
individual properties only for overrides.

Expanding Items (flex-grow)
flex-grow

Values: Number
Specifies whether and in what proportion an item may stretch larger.
1 allows expansion; 0 prevents it.
flex-grow is applied to the flex item element.

Expanding Items (cont’d)

Relative Flex
When the flex-basis has a value other than 0, higher integer
values act as a ratio that applies more space within that item.
Example: A value of 3 assigns three times more space to box4
than items with a flex-grow value of 1. (Note that it isn't
necessarily 3x as wide as the other items.)

.box4 { flex: 3 1 auto; }

Expanding Items (cont’d.)

Absolute Flex
When the flex-basis is 0, items get sized proportionally
according to the flex ratio.
Example: A value of 3 makes “box4” 3x as wide as the others
when flex-basis: 0.

.box4 { flex: 3 1 0%; }

Shortcut flex Values

• flex: initial (same as flex: 0 1 auto;) 
Prevents the item from growing, but allows it to shrink to fit the
container

• flex: auto (same as flex: 1 1 auto;) 
Allows items to be fully flexible as needed. Size is based on the
width/height properties.

• flex: none (same as flex: 0 0 auto;) 
Creates a completely inflexible item while sizing it to the width/height
properties.

• flex: integer (same as flex: integer 1 0px;) 
Creates a flexible item with absolute flex (so flex-grow integer
values are applied proportionally)

Changing Item Order
order

Values: Number
Specifies the order in which a particular item should appear in the
flow (independent of the HTML source order):
• order is applied to the flex item element.
• The default is 0. Items with the same order value are placed

according to their order in the source.
• Items with different order values are arranged from lowest to

highest.
• The specific number value doesn’t matter; only how it relates to

other values (like z-index) matters.

Changing Item Order (cont’d)

Example:
“box3” has a higher order value (1) than the others with default
order of 0. It appears last in the line even though it’s third in the
markup:

.box3 {
 order: 1;
}

Changing Item Order (cont’d)

Ordinal groups
Items that share the same order value are called an ordinal
group.
Ordinal groups stick together and are arranged from lowest
value to highest:

.box2, .box3 {
 order: 1;
}

Browser Support for Flexbox

The Flexbox spec changed over the years and was implemented
by browsers along the way:

• Current version (2012): display: flex;  
Supported by all current desktop and mobile browser versions

• “Tweener” version (2011): display: flexbox;  
Supported by IE10 only

• Old version (2009): display: box;  
Supported by Chrome <21, Safari 3.1–6, Firefox 2–21; iOS
3.2–6.1, Android 2.1–4.3

Browser Support (cont’d)

To ensure that Flexbox
works across all
supporting browsers, you
need a lot of vendor
prefixes and redundant
declarations.

Use a tool like Autoprefixer
to generate all that code
for you
(autoprefixer.github.io).

http://autoprefixer.github.io

Flexbox Property Review

Flex container properties

display
flex-flow
 flex-direction
 flex-wrap
justify-content
align-items
align-content

Flex item properties

align-self
flex
 flex-grow
 flex-shrink
 flex-basis
order

