
25  

SVG (SCALABLE VECTOR GRAPHICS)

OVERVIEW

• Shape elements in
SVG

• Clipping and masking

• Filter effects

• Styling SVGs

• Interactivity and
animation

• SVG tools

• Production tips

• Responsive SVGs

Intro to SVG

SVG (Scalable Vector Graphics) is a vector image format.

Vector images, which are defined by coordinates and lines, can
be resized without loss of quality.

Intro to SVG (cont’d)

• SVG is good for line drawings like icons, logos, charts, etc.

• The file size of an SVG is often significantly smaller than the
same image in a bitmapped format.

SVG as an XML Language

• SVG is an XML language for describing two-dimensional
graphics including paths, shapes, text, and filter effects.

• An SVG is just a text file that has been marked up with SVG
elements and styles.

• Because they are text files with their own DOM, elements in
SVGs can be accessed and manipulated with CSS and
JavaScript.

Intro to XML

XML (eXtensible Markup Language) is a set of rules for
creating other markup languages.

A few web-related languages written in XML:

• XHTML: HTML with the stricter syntax rules of XML

• RSS (Really Simple Syndication): Shares content as data
to be read with RSS feed readers

• MathML: Used to describe mathematical notation

• SVG: Scalable Vector Graphics

Intro to XML (cont’d)

XML has strict syntax requirements (so languages can be used
together in a single document), including the following:

• Element and attribute names must be lowercase.

• All elements must be closed (terminated). Empty elements are
closed with a slash before the closing bracket:
.

• Attribute values must be in quotation marks with no extra white
space.

• All attributes must have explicit values (example:
checked="checked" instead of simply checked).

• Proper nesting is strictly enforced.

• Special characters must be represented by numeric character
entities.

• Scripts must be contained within a CDATA section.

SVG Elements
The SVG language includes elements for 2-D graphics,
including the following:

• Lines and shapes (circle, rect, ellipse, path, line,
polyline, and polygon)

• A text element for text content

• Organization elements: g for grouping elements, use and
symbol for reusing drawing

• Elements for clipping (clipPath) and masking (mask)
images

• Elements for raster effects (linearGradient and filter)

Sample SVG Document
This SVG image is drawn with the following SVG
document (simple.svg):

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1"
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="150" height="200" viewBox="0 0 150 200">

<defs>
 <radialGradient id="fade">
 <stop offset="0" stop-color="white"/>
 <stop offset="1" stop-color="orange"/>
 </radialGradient>
</defs>

<g id="greenbox">
 <rect x="25" y="25" width="100" height="100" fill="#c6de89"  
 stroke-width="2" stroke="green"/>
 <circle cx="75" cy="75" r="40" fill="url(#fade)"/>
 <path d="M 13 100 L 60 50 L 90 90 L 140 30" stroke="black"
stroke-width="2" fill="none"/>
</g>

<text x="25" y="150" fill="#000000" font-family="Helvetica"
font-size="16">A Simple SVG</text>

</svg>

NOTE: The code will be
discussed in sections over
a series of slides.

Sample SVG Document (cont’d)

<?xml version="1.0" encoding="utf-8"?> (A)
<svg version="1.1" (B)
 xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 width="150" height="200" viewBox="0 0 150 200"> (C)
...

(A) An XML declaration identifying the file as XML and identifying
the character encoding

(B) The root element for SVG files is svg. The version number is
added by most drawing programs but is not required. The xmlns
attributes declare the namespace, which tells the browser to use
the SVG element vocabulary. The xlink attribute allows links
and references to external files.

(C) width and height attributes establish the viewport (the
window in which the SVG is displayed).

Sample SVG Document (cont’d)
...
<defs> (D)
 <radialGradient id="fade"> (E)
 <stop offset="0" stop-color="white"/>
 <stop offset="1" stop-color="orange"/>
 </radialGradient>
</defs>
...

(D) The defs element defines elements that
will be referenced later by their id values.
Here it’s used to define a radial gradient that
could be reused throughout a document.

(E) The radialGradient element contains
two color stop elements, one for white, one
for orange.

Sample SVG Document (cont’d)
...
<g id="greenbox"> (F)
 <rect x="25" y="25" width="100" height="100"
fill="#c6de89" stroke-width="2" stroke="green"/> (G)
 <circle cx="75" cy="75" r="40" fill="url(#fade)"/>
 <path d="M 13 100 L 60 50 L 90 90 L 140 30" stroke="black"
stroke-width="2" fill="none"/> (H)
</g>
...

(F) The shape elements rect, circle, and path are
grouped with the g element and given the name greenbox.

(G) The rect element is given a size, fill, and stroke with
attributes. The circle is assigned the "fade" radial gradient
defined earlier. Empty elements are terminated.

(H) The crooked line is define by path. The d (data)
attribute provides x,y coordinates. The path starts with M
(move to), and each L draws a "line to" the next set of
coordinates.

Sample SVG Document (cont’d)

...
<text x="25" y="150" fill="#000000" font-family="Helvetica"
font-size="16">A Simple SVG</text> (I)

</svg>

(I) The text element contains the text. Style
attributes set the font size and font family. There
are many similarities between SVG attributes and
CSS styles

The root svg element is closed at the end of the
document.

Embedded Bitmap Images

SVGs may contain embedded bitmapped content:

<image xlink:href="starrysky_600.jpg" x="45" y="0"
width="100" height="150"/>

You might do this to add a behavior or interactivity that a JPEG
or PNG can’t do on its own.

Clipping
The clipPath element defines a vector path that cuts out a
section of the image. Parts outside of the path are hidden:
<defs>
 <clipPath id="star">
 <polygon points="390,12 440,154 590,157 470,250 513,393 390,307 266,393
310,248 189,157 340,154 390,12" style="fill: none"/>
 </clipPath>
</defs>
<image xlink:href="starrysky_600.jpg" width="600" height="400"  
 style="clip-path: url(#star)"/>

Masking
Masking is like clipping, but it uses a
bitmapped overlay (a gradient or another
image) to determine the opacity levels of the
image. A mask is created with the mask
element:

<defs>
 <linearGradient id="blend">
 <stop offset="0%" stop-color="#ffffff" />
 <stop offset="100%" stop-color="#000000"/>
 </linearGradient>

 <mask id="star" x="0" y="0" width="400" height="381">
 <polygon points="390,12 440,154 590,157 470,250
513,393 390,307 266,393 310,248 189,157 340,154 390,12"
style="fill: url(#blend)"/>
 </mask>
</defs>

<image xlink:href="starrysky_600.jpg" width="600"
height="400" style="mask: url(#star);"/>

Filter Effects
• SVG includes over a dozen

Photoshop-like filter effects
for manipulating images.

• Effects can be used alone or
combined.

• The original image is
untouched because effects
are applied when the image
is rendered.

Reusing SVG Drawings

Define a shape once and reuse it throughout the document with
the symbol element. Content in symbol elements does not get
rendered:

<symbol id="iconA" viewBox="0 0 100 100">
 <!-- all the paths and shapes that make up the icon -->
</symbol>

When you want to use the symbol, call it with the use element
that triggers it to render in place:

<svg class="icon">
 <use xlink:href="#iconA" />
</svg>

NOTE: You can create SVG sprites with symbol and use them to reduce the number of
calls to the server for SVG images.

Styling SVGs

There are four ways to apply styles to the elements in an SVG:

• Presentation attributes  
Attributes defined in the SVG language:
<rect x="25" y="25" width="100" height="100"
fill="#c6de89" stroke-width="2" stroke="green"/>

• Inline styles  
With the inline style attribute (similar to HTML):
<rect x="25" y="25" width="100" height="100"
style="fill:#c6de89; stroke-width:2; stroke:green;" />

Styling SVGs (cont’d)
• Internal style sheet 

A style element at the top of the svg source document:
<svg>
 <style>
 /* styles here */
 </style>
 <!--drawing here -->
</svg>

• External style sheet 
Importing a .css document with an @import rule in the SVG source
for inline SVGs or SVGs placed with object or iframe elements:
<svg>
 <style type="text/css">
 @import "svg-style.css";
 /* more styles */
 </style>
 <!-- svg code here -->
</svg>

NOTE: Inline svg elements can also be styled by style sheets linked to the HTML source.

JavaScript and SVG

• SVGs can be scripted with JavaScript because all of its element
and attribute nodes are accessible in the DOM.

• This allows events like loading and mouseovers to trigger
changes in the SVG.

• Effects range from adding a little motion to a UI element to
creating complex game interfaces.

• For inline SVGs, scripts must be contained in an XML Character
Data Block:

<script><![CDATA[
 /* script here… */
]]></script>

Animation
SVG can be used to add animation effects to a web
page. There are several options for animating SVGs:

• JavaScript 
JavaScript is currently the most reliable way to create
complex animations in SVG.

• CSS Animation 
SVG elements can be animated with CSS transitions
and keyframes. Browser support is currently spotty,
and you can’t animate SVG attributes.

• SVG/SMIL 
There are animation effects built into SVG based on
the SMIL XML language (Synchronized Multimedia
Integration Language), but they’re not well supported.

An
im

at
ed

 S
VG

 b
y

C
hr

is
 G

an
no

n

Data Visualization

SVG is a popular format for
data visualization because
images can be generated
dynamically with real data.

Example: Make the
temperature level on an SVG
thermometer rise and fall with
real weather data.

SVG Tools

You can write SVG by hand, but having it exported from a
drawing program is easier. Some SVG tools include

• Adobe Illustrator (adobe.com)

• Inkscape (free from inkscape.org)

• Boxy (boxy-svg.com)

• SVG-Edit (github.com/SVG-Edit/svgedit)

• Interface design tools like Sketch, AdobeXD, and Affinity
Designer

SVG Production Tips
When designing, follow these tips for optimizing SVG images
before exporting them:

• Define the dartboard or
drawing size in pixels.

• Use layers to group elements
logically.

• Give elements and layers
meaningful names.

• Simplify paths.

• Be aware of decimal places  
(more decimals = larger files).

• Avoid raster effects.

• Use centered strokes.

• Pay attention to fonts
(external web fonts may not
load).

Optimizing SVGs with SVGO
• Image editing programs

usually export bloated code,
so SVGs should be
optimized with the SVGO
tool after export
(github.com/svg/svgo).

• There are SVGO plug-ins for
many graphics programs and
Grunt or Gulp task runners.

• SVGOMG (shown on right)
provides a graphical interface
for SVGO (github.io/svgomg).

File Compression

SVG files can be compressed with text-compression utilities:

• Gzip 
A utility on the server that compresses text files with
algorithms. A gzipped SVG uses the suffix .svgz.

• Brotli 
An open source compression algorithm from Google

Responsive SVGs

• SVGs are great for responsive layouts because they can
resize larger or smaller without any loss of detail.

• The SVG must be marked up in a way to preserve its aspect
ratio (the ratio of its width to height) when the image resizes.

• This requires an understanding of the viewport and the
viewbox.

Responsive SVGs (cont’d)

The viewport

• Defined by width and height attributes in the svg element:

<svg width="400" height="500">
 <!-- drawing content here -->
</svg

• It’s like a window through which you view the drawing area.

• The viewport coordinate system starts at 0 in the top left
corner and increases to the right and downward.

Responsive SVGs (cont’d)

The viewbox
• The viewbox controls the dimensions of the drawing itself in

the user space.

• It is defined with the viewBox attribute. The x and y values
determine the position of the top left corner in the viewport:

viewBox="x y width height"

• In this example, the viewbox matches the viewport:

<svg width="400" height="500" viewBox="0 0 400 500">
<!-- drawing content here -->
</svg>

• The viewBox preserves aspect ratio by default.

Responsive SVGs (cont’d)

For SVGs embedded with img or object:

• Make sure the svg element includes the viewBox attribute.

• Do not include width and height if you want the SVG to fill
the width of its container.

• Set the width and height of the img or object element to fill
the width of its containing element (see NOTE):

img {
 width: 100%;
 height: auto;
}

NOTE: This approach is necessary to support Internet Explorer. Modern
browsers don’t require width and height attributes for proportional sizing.

Responsive SVGs (cont’d)

The SVG markup (flowers.svg):

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" viewBox="0 0 160 120">
 <!-- flower drawing -->
</svg>

The HTML markup:

<div class="container">

</div>

The styles:

.container {
 width: 50%;
 outline: 1px solid gray;
 margin: 2em auto;
}

/* IE fix */
img {
 width: 100%;
 height: auto;
}

The SVG image scales with
the .container div:

Responsive SVGs (cont’d)

For inline SVGs (added with the svg element):

Inline SVGs scale proportionally in modern browsers, but old
browsers and Internet Explorer require an elaborate "padding
hack”:

• Include viewBox and omit width and height attributes on
the svg element.

• Put the svg in a container div and set its height to 1 pixel.

• Apply an amount of padding to the top of the div to give it
the same aspect ratio as the SVG image.

• Once the div is expanded with padding, position the svg
element in the top left corner of the div.

Responsive SVGs (cont’d.)

The markup

<div class="container">
 <svg version="1.1"
viewBox="0 0 160 120">
 /* drawing contents */
 </svg>
</div>

The styles
.container {
 width: 100%;
 height: 0;
 padding-top: 75%;  
 /* (120/160)*100% */
 position: relative;
}

svg {
 position: absolute;
 top: 0;
 left: 0;
 width: 100%;
 height: 100%;
}

