
17  

RESPONSIVE WEB DESIGN

OVERVIEW

• What RWD is

• Fluid layouts

• Media queries

• Design strategies and patterns

• Testing options

Introduction to RWD

• RWD is a design and production approach that allows a web
page to adapt to the screen it is viewed on.

• The same HTML source is styled differently based on the
width of the screen.

• It ensures mobile users get the same content as other users,
with a presentation that optimizes usability.

• The term was coined by Ethan Marcotte in 2010 in his article
“Responsive Web Design” for A List Apart.

Introduction to RWD (cont’d)

The Components of RWD

Ethan Marcotte defines the three core components as follows:

• A flexible grid  
Elements are sized so they squeeze and flow into the
available browser space.

• Flexible images  
Images and other embedded media scale to fit their
containing elements.

• CSS media queries  
These are a way to test for browser features such as
viewport width and deliver styles accordingly.

Setting the Viewport

• Mobile browsers render pages on a canvas called the
viewport and then shrink it to fit the screen (device width).

• For example, a web page be rendered on a 980-pixel
viewport and shrunk down to fit a 480-pixel wide screen.

• To make the viewport the same size as the device width:

<meta name="viewport"  
 content="width=device-width, initial-scale="1">

Setting the Viewport (cont’d)

Flexible Grids (Fluid Layout)

Flexible Grid (Fluid Layout)

• Fluid layouts are the best approach for designing for a wide
range of screen widths

• For flexibility, use:

• fr and minmax() and content-based grid track values

• flex in Flexbox

• percentage measurements

Making Images Flexible
To make images scale down to fit the size of their container:

img { max-width: 100%; }

Media Queries

A media query is a special rule that tests for certain conditions
before applying the styles it contains:

@media type and (feature: value) {
 /* styles for browsers that meet this criteria */
}

A few query examples:

• Is it on a screen or printed?

• Is the browser at least a certain width?

• Is the orientation landscape or portrait?

Media Query Example
@media screen and (orientation: landscape) {
 body {
 background: skyblue;
 }
}
@media screen and (orientation: portrait) {
 body {
 background: coral;
 }
}

Media Types

• The first part of a media query identifies the media type.

• The current media types are all, print, screen, and
speech.

Example:

@media print {
 /* print-specific styles between the brackets */
}

• Media types were introduced in CSS2.

Media Feature Queries

CSS3 introduced media feature queries that test for a particular
feature of a viewport or device.

Example:  
h1 headings display in Lobster font only when the viewport is at least
40em wide.

h1 {
 font-family: Georgia, serif;
 }
@media screen and (min-width: 40em) {
 h1 {
 font-family: 'Lobster', cursive;
 }
}

NOTE: min-width and max-width queries are most useful for RWD.

Using Media Queries

In a style sheet:

• Put an @media rule in a style sheet to deliver styles based on
viewport width.

• Make sure the @media rule comes after your baseline styles.

With external style sheets:

• Link or @import separate style sheets based on a query:

 <link rel="stylesheet" href="styles.css">
 <link rel="stylesheet" href="2column-styles.css"  
 media="screen and (min-width:1024px)">

Breakpoints

• A breakpoint is the point at which we use a media query to
introduce a style change.

• Best practice is to create breakpoints for individual parts of
the page rather than the entire page at once.

• Designers generally create the narrow-screen version first
and then change components as needed as the screen
grows larger.

• Em-based breakpoints introduce layout changes proportional
to font size.

Breakpoints (cont’d.)

A few breakpoints
used by Etsy.com
(2018)

Designing Responsively
You need to pay attention to the following aspects of the
page in a responsive design:

• Content hierarchy

• Layout

• Typography

• Navigation

• Images

• Special content like tables and forms

Content Hierarchy

• The biggest challenge is deciding what is visible in the
first screen on small devices.

• You should strive for content parity across devices.
Everyone should have access to the same information,
even if it’s not in exactly the same place.

• Content organization is the most important part of site
planning. It’s often handled by information architects or
content strategists.

Layout

• RWD is based on fluid layouts.

• The most common approach is to start with one column
on small devices and add columns as space is
available.

• The optimum width of a text element should be based on
a line length of 45 to 75 characters. If lines are much
longer, introduce a breakpoint.

Responsive Layout Patterns

Typography

• Typography should be optimized for different screen
sizes.

• Avoid complicated font styles on small screens.

• Set font size to keep line lengths between 45 to 75
characters.

• Line height should generally be larger on larger screens.

• Left and right margins can increase on larger screens.

Navigation Options

Navigation Options (cont’d)

Images

• Use responsive image markup techniques.

• Serve the smallest file size version by default.

• Make sure important image detail isn’t lost at smaller sizes.
Allow zooming or provide a cropped version.

• Avoid text in graphics or provide alternative versions with
larger type for small screens.

Special Content

• Forms  
Design for efficiency and flexibility (Flexbox)

• Tables 
Research responsive table patterns

• Interactive elements  
— Scale videos proportionally.  
— Explore alternatives that work better on small screens (for
example, linking to a map app instead of just providing a
small embedded map).

Site Testing

Testing sites in a wide variety of browsing environments is
critical:

• Real devices 
The best way to test is on actual smartphones, tablets, etc.

• Emulators  
Use a desktop application that simulates device hardware
and software.

• Browser testing services 
Subscription-based services show how your site looks on a
huge variety of browsers.

