
12  

FORMATTING TEXT

OVERVIEW

• Font-related properties

• Text line settings

• Various text effects

• List style properties

• ID, class, and descendent selectors

• Specificity

Designing Text

Styling text on the web is tricky because you don’t have control
over how the text displays for the user:

• They may not have the font you specify.

• They may have their text set larger or smaller than you
designed it.

Best practices allow for flexibility in text specification.

Typesetting Terminology

• A typeface is a set of characters with a single design (example:
Garamond).

• A font is a particular variation of the typeface with a specific
weight, slant, or ornamentation (example: Garamond Bold
Italic).

• In traditional metal type, each size was a separate font
(example: 12-point Garamond Bold Italic).

• On a computer, fonts are generally stored in individual font files.

CSS Basic Font Properties

CSS font properties deal with specifying the shapes of the
characters themselves:

• font-family

• font-size

• font-weight

• font-style

• font-variant

• font (a shorthand that includes settings for all of the above)

Specifying the Font Family

font-family

Values: One or more font family names, separated by commas

Example:
body { font-family: Arial; }
var { font-family: Courier, monospace; }

Specifying the Font Family (cont’d)

• Font names must be capitalized (except generic font families).

• Use commas to separate multiple font names.

• If the name has a character space, it must appear within
quotation marks:

p { font-family: "Duru Sans", Verdana, sans-serif; }

Using Fonts on the Web

• The font must be available on the user’s machine for it to display.

• The best practice is to provide a list of options. The browser
uses the first one that is available.

• Start with the font you want and then provide backup options
ending with a generic font family, as shown here:
p { font-family: "Duru Sans", Verdana, sans-serif; }

• You can also download a web font with the page, but it adds to
the download and display time.

Generic Font Families

• Generic font families instruct the browser to use an available
font from one of five stylistic categories:  
serif, sans-serif, monospace, cursive, fantasy

• Generic font families are often used as the last backup
option.

Generic Font Families (cont’d)

Specifying Font Size
font-size

Values:
• CSS length units
• Percentage value
• Absolute keywords (xx-small, x-small, small, medium,
large, x-large, xx-large)

• Relative keywords (larger, smaller)

Example:
 h1 { font-size: 2.5rem; }

Specifying Font Size (cont’d)

Most common sizing methods:

• rem and em units

• percentages (based on the inherited font size for that
element)

• pixels (px) can be used, but they’re not flexible.

Font Size: rem Units

• The rem (root em) is equal to the font size of the html (root)
element.

• In browsers, the default root size is 16 pixels, so:  
1 rem = 16 pixels.

• If the font size of the root is changed, rem measurements
change too.

• !!! Old browsers do not support rem units (IE8 and earlier).

Font Size: em Units
• The em unit is based on the current font size of the element.

• The default font size is 16 pixels. By default, 1em = 16
pixels.

• But if you change the font size of the element, the size of its
em unit changes too.

• Ems may be different sizes in different parts of the document
and may compound larger or smaller when elements are
nested.

• This makes ems a little tricky to use, although they are better
supported than rem units.

Font Weight (Boldness)
font-weight

Values: normal, bold, bolder, lighter, 100, 200, 300, 400,
500, 600, 700, 800, 900

Example:
h1 { font-weight: normal; }

span.new { font-weight: bold; }

• Most common values are normal and bold.

• Numerical values are useful when using a font with multiple
weights.

Font Style (Italics)

font-style

Values: normal, italic, oblique

Example:
cite { font-style: italic; }

• Makes text italic, normal, or oblique (slanted, but generally the
same as italics).

Small Caps
font-variant

Values (in CSS2.1): normal, small-caps

Example:
abbr { font-variant: small-caps; }

• Small caps are a separate font design that uses small
uppercase characters in place of lowercase letters.

• They help acronyms and other strings of capital letters blend in
with the weight of the surrounding text.

Condensed and Extended Text

Values (in CSS2.1): normal, ultra-condensed,
extra-condensed, condensed, semi-
condensed, semi-expanded, expanded,
extra-expanded, ultra-expanded

Example:
abbr { font-variant: small-caps; }

• Tells the browser to select a normal, condensed,
or extended font variation from a typeface if it is
available

font-stretch

The Shortcut font Property
font

Values (in CSS2.1): A list of values for all the individual properties, in
this order:

{font: style weight stretch variant size/line-height font-family}

At minimum, it must contain font-size and font-family, in that
order. Other values are optional and may appear in any order prior to
font-size.

Example:
p { font: 1em sans-serif; }

h3 { font: oblique bold small-caps 1.5em Verdana, sans-
serif; }

Advanced Typography

The CSS3 Font Module offers properties for fine-tuned
typography control, including:

• Ligatures

• Superscript and subscript

• Alternate characters (such as a swash design for an S)

• Proportional font sizing using x-height

• Kerning

• OpenType font features

Text Line Treatments

Some properties control whole lines of text:

• Line height (line-height)

• Indents (text-indent)

• Horizontal alignment (text-align)

Line Height

line-height

Values: Number, length, percentage, normal

Example:
p { line-height: 1.4em; }

• Line height defines the minimum distance from baseline to
baseline in text.

Line Height (cont’d.)

• The baseline is the imaginary line upon which the bottoms of
characters sit.

• If a large character or image is on a line, the line height
expands to accommodate it.

Indents
text-indent

Values: Length, percentage

Examples:
p {text-ident: 2em;}

p {text-ident: 25%;}

p {text-ident: -35px;}

Horizontal Text Alignment
text-align

Values: left, right, center, justify, start, end

Examples:

Underlines (Text Decoration)
text-decoration

Values: none, underline, overline, line-through, blink

Examples: NOTE:  
text-decoration is
often used to turn off
underlines under links:
a {
 text-decoration: none;
}

Text Decoration Tips

• If you turn off underlines under links, be sure there is another
visual cue to compensate.

• Underlining text that is not a link may be misleading. Consider
italics instead.

• Don’t use blink. Browsers don’t support it anyway.

Capitalization
text-transform

Values:  
none, capitalize, lowercase, uppercase, full-width

Examples:

Spacing
letter-spacing

Values: length, normal

word-spacing

Values: length, normal

Examples:

Text Shadow
text-shadow

Values: 'horizontal-offset' 'vertical-offset' 'blur-radius' 'color', none

The value is two offset measurements, an optional blur radius, and
a color value (with no commas between).

Example:

List Style Properties

There are three properties for affecting the display of lists:

• list-style-type  
Chooses the type of list marker

• list-style-position  
Sets the position of the marker relative to the list element
box

• list-style-image  
Allows you to specify your own image for use as a bullet

LIST STYLES

Choosing a Marker
list-style-type

Values:  
none, disc, circle, square, decimal, decimal-leading-zero, lower-
alpha, upper-alpha, lower-latin, upper-latin, lower-roman, upper-
roman, lower-greek

Unordered lists: ul { list-style-type: keyword; }

Keyword System
decimal 1, 2, 3, 4, 5…

decimal-leading-zero 01, 02, 03, 04, 05…

lower-alpha a, b, c, d, e…

upper-alpha A, B, C, D, E…

lower-latin a, b, c, d, e… (same as lower-alpha)

upper-latin A, B, C, D, E… (same as upper-alpha)

lower-roman i, ii, iii, iv, v…

upper-roman I, II, III, IV, V…

lower-greek α, β, γ, δ, ε…

LIST STYLES
Choosing a Marker (cont’d)

Ordered lists: ol { list-style-type: keyword; }

LIST STYLES

Marker Position
list-style-position

Values: inside, outside, hanging

Positions the marker relative to the content area:

LIST STYLES

Custom Bullets
list-style-image

Values: url(location), none

Example:
ul {

 list-style-type: disc;
 list-style-image: url(/images/rainbow.gif);
 list-style-position: outside;
}

More Selector Types

• Descendent selectors

• ID selectors

• Class selectors

• Universal selector

Descendent Selectors

A descendent selector targets elements contained in another
element.

It’s a kind of contextual selector (it selects based on
relationship to another element).

It’s indicated in a list separated by a character space.

ol a {font-weight: bold;}  
(only the links (a) in ordered lists (ol) would be bold)

 h1 em {color: red;}  
(only emphasized text in h1s would be red)

Descendent Selectors (cont’d)

They can appear as part of a grouped selector:

h1 em, h2 em, h3 em {color: red;}  
(only emphasized text in h1, h2, and h3 elements)

They can be several layers deep:

ol a em {font-variant: small-caps;}  
(only emphasized text in links in ordered lists)

ID Selectors
ID selectors (indicated by a # symbol) target elements based on
the value of their ID attributes:

<li id="primary">Primary color t-shirt

To target just that item:

li#primary {color: olive;}

To omit the element name:

#primary {color: olive;}

It can be used as part of a compound or contextual selector:

#intro a { text-decoration: none;}

Class Selectors

Class selectors (indicated by a . symbol) select elements
based on the value of their class attributes:

p.special { color: orange;}

(All paragraphs with the class name "special" would be orange.)

To target all element types that share a class name, omit the
element name in the selector:

.hilight { background-color: yellow;}

(All elements with the class “hilight” would have a yellow background.)

Universal Selector

The universal element selector (*) matches any element, like a
wildcard in programming languages:

* {border: 1px solid gray;}

(puts a 1-pixel gray border around every element in the document)

Can be used as part of contextual selectors:

#intro * {border: 1px solid gray;}

(selects all elements contained within an element with the ID intro)

Specificity Basics

Specificity refers to a system for sorting out which selectors have
more weight when resolving style rule conflicts.

More specific selectors have more weight.

In simplified terms, it works like this:

• Inline styles with the style attribute are more specific than (and
will override…)

• ID selectors, which are more specific than (and will override…)

• Class selectors, which are more specific than (and will override…)

• Individual element selectors

Calculating Specificity

There is a system used to calculate specificity. Start by drawing three boxes:

 [] [] []

For each style rule:

1. Count the IDs in the selector and put that number in the first box.

2. Count the class and pseudo-class selectors and put the number in the
second box.

3. Count the element names and put the number in the third box

 [ID] [class] [elements]

4. The first box that is not a tie determines which selector wins.

Calculating Specificity (cont’d)

Example:

h1 { color: red;} [0] [0] [1]

h1.special { color: lime; } [0] [1] [1]

The second one has a class selector and the first one doesn’t,
therefore the second one is more specific and has more weight.

The lime color applies to h1s when they have the class name
“special.”

Using Specificity
Use specificity strategically to take advantage of overrides:

p { line-height: 1.2em; } [0] [0] [1]

(sets the line-height for all paragraphs)

blockquote p { line-height: 1em; } [0] [0] [2]

(more specific selector changes line-height when the paragraph
is in a blockquote)

p.intro { line-height: 2em; } [0] [1] [1]

(paragraphs with the class “intro” have a line-height of 2em, even
when they’re in a blockquote. A class name in the selector has

more weight than two element names.)

