
20  

MODERN WEB
DEVELOPMENT TOOLS

OVERVIEW

• Introduction to the command line

• CSS preprocessors (Sass)

• CSS postprocessors (PostCSS)

• “Build” tools

• Git version control

Command-Line Interface

In a command-line interface (CLI), you interact with the
computer by typing commands directly into a terminal program.

The program that interprets the commands you type is called a
shell (bash is the shell used on Mac and Linux).

Command-line tools are popular because

• They are useful for file management on remote servers.

• It is easier to create a command-line tool than one with a
full graphical user interface (GUI).

Terminal
The Terminal application on Mac and Linux runs the bash shell
required for many web development tools.

Windows users can install the Cygwin bash emulator or install a
full Linux environment.

Prompts
The command-line prompt is a string of characters that indicates
the terminal is ready to receive a command:

$:_

Prompts may also include the computer name, the working
directory, and the user name:

MyComputer:Sites jen$:_

When you see the prompt, type your command and hit Enter.

NOTE: The underscore above indicates the cursor position (it may be a
flashing line or rectangle on the screen).

Commands

Commands are standardized abbreviations for the task you
want to perform.

Type a command after the prompt. The command is executed,
and a new prompt appears.

Example: The ls command displays the contents of the current
(working) directory:

JensAir:~ jen$ ls
Applications Downloads Movies Public
Desktop Dropbox Music Sites
Documents Library Pictures
JensAir:~ jen$

Flags

A flag changes how a utility operates (like an option). It follows the
command name and is indicated by a single or double dash (-).

Example: Adding the -l (long) flag, makes the ls command
display directory contents in a longer format that includes
permission settings and creation dates:

JensAir:~ jen$ ls -l
total 0
drwxr-xr-x 5 jen staff 170 Jul 8 2016 Applications
drwx------ 57 jen staff 1938 Sep 11 09:47 Desktop
drwx------ 26 jen staff 884 May 18 11:34 Documents
drwx------+ 151 jen staff 5134 Sep 3 15:47 Downloads
...
drwxr-xr-x 6 jen staff 204 May 6 2015 Public
drwxr-xr-x 11 jen staff 374 Jul 10 2016 Sites
JensAir:~ jen$

Arguments

An argument provides the specific information required by
some functions.

Example: To change to a new directory, use the cd (change
directory) command as well as the name of the target directory.
The directory name is the argument for the cd command.

JensAir:~ jen$ cd Dropbox
JensAir:Dropbox jen$_

To back up a level, use the "dot-dot" shorthand:
JensAir:Dropbox jen$ cd ..
JensAir:~ jen$_

A Few More Command Examples

mv: Moves files and folders

cp: Copies files

mkdir: Creates a new empty directory

rm: Removes a file or subdirectory from the working directory
permanently

man: Displays documentation (the manual) for a command  
(example: man ls shows manual for the ls command).

NOTE: For a complete list of bash commands, see ss64.com/bash.

http://ss64.com/bash

CSS Preprocessors

CSS preprocessors allow authors to write CSS in a syntax
similar to a scripting language.

The most popular preprocessor is Sass, followed by LESS and
Stylus.

Preprocessor syntax offers many efficiencies, including:

• Nesting styles

• Reusable variables

• Reusable sets of styles (mixins)

CSS Preprocessors (cont’d)

A compiler program converts the preprocessor language to a
standard .css file the browser can read:

Nesting  
(shown in Sass syntax)

Sass lets you nest style rules to match the structure of the
document (it decreases the number of selectors):

Sass syntax

nav {
 margin: 1em 2em;
 ul {
 list-style: none;
 padding: 0;
 margin: 0;
 li {
 display: block;

 width: 6em;
 height: 2em;
 }
 }

Converted to standard CSS:

nav {
 margin: 1em 2em;
}
nav ul {
 list-style: none;
 padding: 0;
 margin: 0;
}
nav ul li {
 display: block;
 width: 6em;
 height: 2em;
}

Variables
(shown in Sass syntax)

A variable is a value you define once and use multiple times
throughout the document.

The advantage is you can change the value in one place
instead of replacing it everywhere. It also helps keep styles
consistent.

Sass syntax:

$oreilly-red: #900;

a {
 border-color: $oreilly-red;
}

Converted to standard CSS:

a {
 border-color: #900;
}

Mixins
(shown in Sass syntax)

A mixin is set of style declarations that you can define once and
reuse. It eliminates a lot of repetitive code:

Sass syntax:

@mixin special {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
}
a.nav {
 @include special;
}
a.nav: hover {
 @include special;
 border: 1px yellow solid;
}

Converted to standard CSS:

a.nav {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
}
a.nav: hover {
 color: #fff;
 background-color: #befc6d;
 border: 1px dotted #59950c;
 border: 1px yellow solid;
}

Mixins with Arguments
(shown in Sass syntax)

Use an argument (a placeholder value indicated with a $) in a
mixin to plug different values in as needed:

Sass syntax:

@mixin rounded($radius) {
 -webkit-border-radius: $radius;
 -moz-border-radius: $radius;
 border-radius: $radius;
}
aside {
 @include rounded(.5em);
 background: #f2f5d5;
}

Converted to standard CSS:

aside {
 -webkit-border-radius: .5em;
 -moz-border-radius: .5em;
 border-radius: .5em;
 background: #f2f5d5;
}

NOTE: This is useful for vendor prefixes, as shown in the example.

Postprocessors
Postprocessors take standard CSS and optimize it.

The most popular postprocessor is PostCSS. This is a
JavaScript-based program (a Node.js module) with hundreds of
community-created plug-ins that solve many CSS problems.

PostCSS Examples

A few examples of tasks handled by PostCSS plug-ins:

• Adding vendor prefixes when needed (Autoprefixer)

• Checking for CSS syntax errors (Stylelint)

• Converting rem units to pixel units (Pixrem)

• Generating fallbacks for cutting-edge CSS4 features
(CSSNext)

• Inserting hacks required for old versions of IE (Fixie)

Task Runners (Build Tools)

A task runner is a program that automates common production
processes to make your workflow more efficient.

A build tool generates web pages from multiple components,
such as templates and a database.

The most popular tools are Grunt and Gulp.

They’re built on the open source Node.js JavaScript framework.

Common Build Tool Tasks

• Running CSS pre- and postprocessors

• Concatenation: Assembling module-based style sheets and
scripts into master files for publication

• Compression and minification: Removing unnecessary
whitespace and line returns to reduce file size

• Optimizing images in batches to reduce file size

• Committing and pushing changes to Git

• Building final HTML files from templates and data

Version Control with Git

A version control system (VCS)

• Saves versions of work that you can go back to

• Allows multiple people to work on a shared set of files

Git is the most popular VCS for web development.

GitHub is a service that provides servers for Git projects, for
free or for a fee.

How Git Works

• Git keeps a copy of every revision of your files and folders.

• Every change (called a commit) is logged in with

• A unique ID (generated by Git)

• A message describing the change (written by the user)

• Other metadata

• All past versions and the commit log are stored in a repository
(also called a repo).

• Git is a distributed version control system, meaning everyone
has their own copy of the repo and can work locally and offline.

Git Process and Structure

Working directory  
The directory of files on your computer in which you do your actual work

Staging area  
Files that have been added to Git’s index but that have not yet been committed

Local repository  
A copy of the Git repository that resides on your own computer

Remote repository  
A copy of a repository that resides on a shared server, often serving as a
master copy for a team to share

Git Process and Structure (cont’d)

add (staging)  
Making Git aware of a file so it can track it. When you add a file, it is included
in the index but not yet committed.

commit 
To log a change to the current version of the repository, usually at a logical
point in the workflow

push  
To move data from your local repo to a remote repo

pull 
To update your local repo with data from the shared remote repo

Branching

A branch is a sequential series of commits. You can think of it as
a thread of development.

Projects usually have a primary branch called the master, which
is the official version of the project.

You can start a new branch to work on a particular feature or
bug fix:

Merging
You can merge the commits from one branch into another (such as
from a feature branch into the master).

If Git finds conflicts (different changes to the same line of code), it
gives you a report of conflicts you need to fix manually:

Forking and Cloning

Forking (a GitHub term) makes a copy of a GitHub
repo to your GitHub account so you have your own
copy to play with.

Cloning means making an exact replica of a repo and
everything it contains. It’s common to clone a repo from
a remote server to your local computer.

If you want your work to be merged into the original
repo, you ask the owner to pull in your changes (called
a pull request).

