
21  

INTRODUCTION TO JAVASCRIPT

OVERVIEW

• What JavaScript is

• Variables and arrays

• if/else statements and loops

• Native and custom functions

• Browser objects

• Event handlers

What Is JavaScript?

• JavaScript is a client-side scripting language—it is
processed on the user’s machine (not the server).

• It is reliant on the browser’s capabilities (it may even be
unavailable entirely).

• It is a dynamic programming language—it does not need to
be compiled into an executable program. The browser reads
it just as we do.

• It is loosely typed—you don’t need to define variable types
as you do for other programming languages.

JavaScript Tasks

JavaScript adds a behavioral layer (interactivity) to a web page. Some
examples include:

• Checking form submissions and provide feedback messages and UI
changes

• Injecting content into current documents on the fly

• Showing and hiding content based on a user clicking a link or heading

• Completing a term in a search box

• Testing for browser features and capabilities

• Much more!

Adding Scripts to a Page

Embedded script 
Include the script in an HTML document with the script element:

<script>
 … JavaScript code goes here
</script>

External script 
Use the src attribute in the script element to point to an external,
standalone .js file:

<script src="my_script.js"></script>

Script Placement

In the head of the document
For when you want the script to do
something before the body
completely loads (ex: Modernizr):

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <script src="script.js"></script>
 </head>
 ...

Just before the </body> tag
Preferred when the browser needs
to parse the document and its
DOM structure before running the
script:

...
<body>
 <!--contents of page-->
<script src="script.js"></script>
</body>
</html>

The script element can go anywhere in the document, but the most
common places are as follows:

JavaScript Syntax Basics
• JavaScript is case-sensitive.

• Whitespace is ignored (unless it is enclosed in quotes in a
text string).

• A script is made up of a series of statements, commands that
tell the browser what to do.

• Single-line comments in JavaScript appear after two //
characters:

// This is a single-line comment

• Multiple-line comments go between /* and */ characters.

Building Blocks of Scripts

• Variables

• Comparison operators

• if/else statements

• Loops

• Functions

• Scope

Variables

• A variable is made up of a name and a value.

• You create a variable so that you can refer to the value by name
later in the script.

• The value can be a number, text string, element in the DOM, or
function, to name a few examples.

• Variables are defined using the var keyword:

var foo = 5;

The variable is named foo. The equals sign (=) indicates we are
assigning it the numeric value of 5.

Variables (cont’d)

Rules for naming a variable:

• It must start with a letter or underscore.

• It may not contain character spaces. Use underscores or
CamelCase instead.

• It may not contain special characters (! . , / \ + * =).

• It should describe the information it contains.

Value Data Types
Values assigned to variables fall under a few data types:

Undefined 
The variable is declared by giving it a name, but no value:

var foo;

alert(foo); // Will open a dialog containing "undefined"

null  
Assigns the variable no inherent value:

var foo = null;

alert(foo); // Will open a dialog containing "null"

Numbers 
When you assign a number (e.g., 5), JavaScript treats it as a number (you
don’t need to tell it it's a number):

var foo = 5;

alert(foo + foo); // This will alert "10"

Value Data Types (cont’d)

Strings  
If the value is wrapped in single or double quotes, it is treated as a string of
text:

var foo = "five";

alert(foo); // Will alert "five"

alert(foo + foo); // Will alert "fivefive"

Booleans 
Assigns a true or false value, used for scripting logic:

var foo = true; // The variable "foo" is now true

Arrays 
A group of multiple values (called members) assigned to a single variable.
Values in arrays are indexed (assigned a number starting with 0). You can refer
to array values by their index numbers:

var foo = [5, "five", "5"];

alert(foo[0]); // Alerts "5"
alert(foo[1]); // Alerts "five"
alert(foo[2]); // Also alerts "5"

Comparison Operators

Comparison operators are special characters in JavaScript
syntax that evaluate and compare values:

== Is equal to
!= Is not equal to
=== Is identical to (equal to and of the same data type)
!== Is not identical to
> Is greater than
>= Is greater than or equal to
< Is less than
<= Is less than or equal to

Comparison Operators (cont’d)

Example  
When we compare two values, JavaScript evaluates the statement
and gives back a Boolean (true/false) value:

alert(5 == 5); // This will alert "true"

alert(5 != 6); // This will alert "true"

alert(5 < 1); // This will alert "false"

NOTE: Equal to (==) is not the same as identical to (===). Identical
values must share a data type:

alert("5" == 5); // This will alert "true". They're both "5".

alert("5" === 5); // This will alert "false". They're both
"5", but they're not the same data type.

alert("5" !== 5); // This will alert "true", since they're
not the same data type.

Mathematical Operators

Mathematical operators perform mathematical functions on
numeric values:

+ Add
- Subtract
* Multiply
/ Divide
+= Adds the value to itself
++ Increases the value of a number (or number in a variable) by 1
-- Decreases the value of a number (or number in a variable) by 1

if/else Statements
An if/else statement tests for conditions by asking a true/false
question.

If the condition in parentheses is met, then execute the
commands between the curly brackets ({}):

if(true) {
 // Do something.
}

Example:
if(1 != 2) {
 alert("These values are not equal.");
 // It is true that 1 is never equal to 2, so we should see
this alert.
}

if/else Statements (cont’d)

If you want to do one thing if the test is true and something else
if it is false, include an else statement after the if statement:

var test = "testing";
if(test == "testing") {
 alert("You haven't changed anything.");
} else {
 alert("You've changed something!");
}

Changing the value of the test variable to anything but the word
“testing” will trigger the alert “You've changed something!”

Loops

Loops allow you to do something to every variable in an array
without writing a statement for every one.

One way to write a loop is with a for statement:

for(initialize variable; test condition; alter the value;) {
 // do something
}

Loops (cont’d)

Example: This loop triggers 3 alerts, reading "0", "1", and “2":
for(var i = 0, i <= 2, i++) {
 alert(i);
}

• for(): Says, "for every time this is true, do this.”

• var i = 0: Creates a new variable i with its value set to 0. "i" (short
for “index”) is a common variable name.

• i <= 2: Says, “as long as i is less than or equal to 2, keep looping.”

• i++: Shorthand for “every time this loop runs, add 1 to the value of i.”

• {alert(i);}: This loop will run three times (once each for 0, 1, and
2 values) and alert the i value.

Functions

A function is a bit of code for performing a task that doesn’t run
until it is referenced or called.

Parentheses sometimes contain arguments (additional
information used by the function):

Functions (cont’d)

Some functions are built into JavaScript. Here are examples of
native functions:

• alert(), confirm(), and prompt()  
Functions that trigger browser-level dialog boxes

• Date()  
Returns the current date and time

You can also create your own custom functions by typing
function followed by a name for the function and the task it
performs:

function name() {
 // Code for the new function goes here.
}

Variable Scope
A variable that can only be used within one function is locally
scoped. When you define a variable inside a function, include the
var keyword to keep it locally scoped (recommended):

var foo = "value";

A variable that can be used by any script on your page is said to be
globally scoped.

• Any variable created outside of a function is automatically
globally scoped:

var foo = "value";

• To make a variable created inside a function globally scoped,
omit the var keyword:

foo = "value";

The Browser Object
JavaScript lets you manipulate parts of the browser window
itself (the window object).

Examples of window properties and methods:

Property/Method Description
event Represents the state of an event

history Contains the URLs the user has visited within a browser window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an OK button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an OK and a Cancel button

focus() Sets focus on the current window

Event Handlers

An event is an action that can be detected with JavaScript and
used to trigger scripts.

Events are identified by event handlers. Examples:

• onload When the page loads

• onclick When the mouse clicks an object

• onmouseover When the pointer is moved over an element

• onerror When an error occurs when the document or a
resource loads

Event Handlers (cont’d)

Event handlers can be applied to items in pages in three ways:

• As an HTML attribute:
<body onclick="myFunction();">
/* myFunction runs when the user clicks anything  
within 'body' */

• As a method attached to the element:
window.onclick = myFunction;
/* myFunction will run when the user clicks anything
within the browser window */

• Using addEventListener():
window.addEventListener("click", myFunction);

Notice that we omit the preceding “on” from the event handler with this syntax.

