
by Aaron Gustafson

AUTHOR’s NOTE: This article originally appeared in Chapter 24, Working with the DOM
and Events in Learning Web Design, 6e and is written in a way that assumes you have
read the beginning of that chapter. The exercises it refers to use JavaScript to place a
button on the page that toggles between light to dark visual themes. However, even if you
haven’t read the chapter, this article is still a useful introduction to web storage.

One drawback of the theme toggle button we’ve built so far is that refreshing
the page in the browser resets the theme. That’s not ideal. If a user chooses a
particular theme, we should honor that and display their chosen theme when
they return to the page (or, to use developer lingo, their choice should persist).
In this article, we’ll explore how to do that.

One of the long-time challenges of designing for the web is that, in isolation,
web pages are stateless. That means when you request an HTML page from
a given website, it’s just an HTML page. It doesn’t know who you are, what
you added to your shopping cart, or what you’ve done previously. Each page
load is a blank slate.

Of course, this isn’t our experience of the web today. In fact, I’d argue the web
would not have become what it is without us overcoming that fundamental
challenge. On today’s web, the state of the website—whether you’re logged
in, your account details if you are, the items in your shopping cart, etc.—is
maintained in a few different ways.

Important things like your shopping cart are often maintained in a database
of some sort on the server side of things, which is to say a computer run by
the website’s owner. Typically, the website puts a little bit of information in
your browser—the client side—to connect your browsing experience to the
information in the database. Often, that bit of information is stored in some-

WEB STORAGE Excerpt from:

Learning Web Design, 6e

by Jennifer Robbins
with contributions by Aaron Gustafson
Copyright O’Reilly Media 2025

1

thing called cookies. Cookies are small text files associated with the website’s
domain name that get sent to the server when you request a web page so the
server knows who you are and how to retrieve your personal information.
You’ve probably dismissed at least 200,000 cookie banners at this point in
your life, so I’m betting you’re at least somewhat familiar 🙃.

Whereas cookies work as a bridge between the client side and the server side,
there are ways to store data purely in the browser. The easiest to work with—
the localStorage and sessionStorage objects—are collectively referred to as
web storage. You can think of these two behind-the-scenes browser features
as shelving on which you can store labeled buckets containing values. The
items we store in web storage aren’t technically variables, but they act in a
similar way—we’ll get to what that means shortly.

These two storage options are nearly identical. The only difference between
them is how long the data we put on their shelves sticks around. As you
might expect, data in sessionStorage only exists during a user’s session. As
soon as the user closes their browser, it disappears. Data stored in localStor-
age, however, has staying power.

Web storage is great for persisting information the server really doesn’t need
access to. That could be something simple, like tracking whether a particular
notification was dismissed so you don’t show it again, or it could be complex,
like storing form field values as the user types so you can repopulate the form
if they accidentally close the tab before they hit “Submit.” You could also use
it to save which theme a user has chosen.

MEET LOCALSTORAGE

Working with localStorage is a bit like creating JavaScript variables. When
we declare a variable, we give it a name and assign it a value. localStorage
stores a collection of key/value pairs. The key is akin to a variable name, but
it’s a string. The value is the value you want to associate with that key. It’s
analogous to the value you assign to a variable, but it must also be a string
(see the sidebar “Storing Non-String Values in localStorage”). Let’s look a bit
more closely at how localStorage works.

We store values using the localStorage.setItem() method. Here, I’m storing
the string value “Hi!” for the key “greeting”:

localStorage.setItem("greeting", "Hi!");

When I want to retrieve the value again, I call localStorage.getItem() and
pass it the key (see Note):

localStorage.getItem("greeting"); // "Hi!"

NOTE

If the key you try to get is not found, the
method returns a null value.

Learning Web Design, 6th Edition

Meet localStorage

2

Storing Non-String Values in localStorage
With localStorage, all values are stored as strings. That means if you store a
number value, it will come back to you as a string containing that number:

localStorage.setItem("amount", 100);
localStorage.getItem("amount"); // "100"

If you’re not aware of this, it can trip you up. Don’t fret, though; you can easily
convert the string that was stored back into the proper data type. In the case of
numbers, the built-in parseInt() function will convert a string to a number for you:

let amount = parseInt(
 localStorage.getItem("amount"), 10
);

While the requirement to store string values may seem limiting, it’s not too hard
to work around. It just requires a little bit of effort to convert certain value types
to strings and back again. Thankfully, JavaScript provides all the tools you need to
do that. For a detailed discussion of this, read “How to Store Objects or Arrays in
Browser Local Storage” by Dillion Megida (freecodecamp.org/news/how-to-store-
objects-or-arrays-in-browser-local-storage/).

If you’re curious to see the data stored in localStorage for your site or any
others, you can access it using your browser’s developer tools. In Chrome and
related browsers, it’s part of the Application tab (see FIGURE A). In Safari and
Firefox, it’s under Storage.

FIGURE A. Accessing local storage in Chrome DevTools

For more on localStorage, including how to store complex values like arrays,
check out Benjamin Semah’s article “How to Use LocalStorage in JavaScript”
(freecodecamp.org/news/use-local-storage-in-modern-applications/).

It should be easy to see that localStorage is the right tool for storing and
retrieving the user’s current theme in the theme-toggle project. We have one
more challenge to overcome, though: if we retrieve the stored value in an
external JavaScript file (referenced via the script element in our HTML),
users will need to wait for that file to be downloaded and processed before
they’ll see the theme change. That could take anywhere from a few hundred
milliseconds to several seconds, which is not a great user experience. We’ll
discuss why that’s the case in the next section.

 Web Storage

Meet localStorage

3

HOW AND WHEN OUR JAVASCRIPT IS
PROCESSED

At a basic level, when you navigate to a web page, the browser downloads
the HTML first. It then parses the HTML to create the structure of the page
we call the DOM. At this point, the browser begins sending out requests
for assets like CSS, JavaScript, images, and so on, starting with requests at
the top of the HTML source (see FIGURE B). Browsers prioritize requesting
certain resources over others to try to render the page as quickly as possible
(see Note).

Server

Does not block render

Blocks render
<html lang="us">
 <head>
 <meta charset="utf-8">
 <title>Jen's Kitchen</title>
 <link rel="stylesheet" href="styles.css">
 </head>
 <body>
 <h1>Jen's Kitchen</h1>
 <p>Welcome to Jen's Kitchen</p>
 <figure>

 </figure>
 <p>Our talented chefs...</p>
 <p>In addition to our delicious food...</p>
 <script src="word-counter.js"></script>
 </body>
</html>

FIGURE B. Browsers must request external resources like CSS, JavaScript, and
images. Some resources, like JavaScript, will stop the browser from rendering the
page until the file is downloaded and run.

Browsers request CSS as they go, and the CSS will be downloaded and parsed
while the DOM is being constructed. JavaScript is different, though. When
the browser hits a script element, it stops everything until it has downloaded
and run the JavaScript code. While the browser is busy doing that, it’s not
building the DOM. It’s not processing CSS. Nothing. That’s why we refer to
JavaScript as a render-blocking resource.

Browsers do this because JavaScript can alter any elements that come before
it in the source. The browser doesn’t want to continue rendering the docu-
ment if it might need to go back and rework something further up the page.
Developers generally put script elements just before the closing body tag (</
body>) to avoid blocking rendering in this way, as you have been doing in the
exercises.

That brings us to the problem we need to solve. If a user has chosen the dark
theme and we’ve stored it in localStorage, the code to retrieve that informa-
tion isn’t being run until after the page has fully rendered. That means the
page has the default light theme when the page loads, and it will switch to the
dark theme suddenly when the JavaScript runs. That’s jarring.

NOTE

For a detailed discussion of the
browser rendering process, check out
the article “How Browser Rendering
Works—Behind the Scenes” by Ohans
Emmanuel (blog.logrocket.com/how-
browser-rendering-works-behind-
scenes/).

Learning Web Design, 6th Edition

How and When Our JavaScript Is Processed

4

How do we overcome that? Because our theme toggle controls the theme via
a class on the html element, we can put a tiny amount of JavaScript in the
head of the document to get the theme and apply the class, as needed, to the
html element.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Page Title</title>
 <script>
 // code here can alter the html, head,
 // meta[charset], and title elements
 </script>
 </head>
 <!-- code continues below -->

It’ll still block rendering, but if the JavaScript is inline—within the script
element rather than in an external file—it will run immediately. And because
it’s so high up in the DOM, it will run before any rendering has happened,
so a user who prefers the dark theme won’t see the light theme for even a
millisecond.

Armed with this knowledge, let’s put a final bit of polish on the theme toggle
in EXERCISE A. EXERCISE B, immediately following, is a bonus challenge.

EXERCISE A. Saving the theme

In this exercise, you’ll use localStorage to save the user’s preferred theme and retrieve it
again whenever the page is loaded. You’ll also use an inline script in your HTML to deliver
the best possible user experience.

The JavaScript and HTML documents needed for this exercise are provided with the
materials for the book, available at learningwebdesign.com/materials. The theme-
toggle.js file contains the script for placing the theme toggle button and is the starting
point for this exercise (FIGURE C).

FIGURE C.   The theme toggle button →

 Web Storage

How and When Our JavaScript Is Processed

5

Step 1:	Create a function that saves the chosen theme
	 to localStorage
1.	 Open theme-toggle.js in a text or code editor.

2.	 Above toggleTheme(), create a new function called saveTheme() that we’ll use to save
the current theme to localStorage:

function saveTheme() {

}

3.	 Within the function, declare a variable (theme) to track the theme name. Set its value to
“light” since that’s the default theme for the page:

function saveTheme() {
 let theme = "light";
}

4.	 Next, write a conditional if statement that checks if the dark theme is currently applied
to the html element (already available as $html), using classList.contains(). We did
this same step in EXERCISE 24-4. Since the classList.contains() method returns a
Boolean true or false, we can insert it directly into the conditional statement, like this:

function saveTheme() {
 let theme = "light";
 if ($html.classList.contains("dark")) {

 }
}

5.	 Inside the body of the conditional—remember, this code will be run if the current theme
is dark—assign a new value of “dark” to theme:

function saveTheme() {
 let theme = "light";
 if ($html.classList.contains("dark")) {
 theme = "dark";
 }
}

6.	 Finally, store the theme name, using localStorage.setItem(). As with variable
naming, it’s a good idea to choose a brief and descriptive key. We’ll use “saved_theme”.
Putting it all together, your function should look like this:

function saveTheme() {
 let theme = "light";
 if ($html.classList.contains("dark")) {
 theme = "dark";
 }
 localStorage.setItem("saved_theme", theme);
}

Step 2:	Call that function when the button is clicked
7.	 Now that we have the saveTheme() function ready to store the current theme to

localStorage, we need to call it. Do that from within the toggle button’s event handler.
Now, when the user clicks the button, the button gets updated and that theme is
stored:

EXERCISE 1. Continued

→

NOTE

Variables and functions that I have cre-
ated and named appear in orange. You
can assume that keywords, operators,
variables, and functions not in orage
are part of the built-in functionality of
JavaScript.

Learning Web Design, 6th Edition

How and When Our JavaScript Is Processed

6

function toggleTheme() {
 $html.classList.toggle("dark");
 updateButton();
 saveTheme();
}

Step 3:	Create a function to handle initializing
	 the theme and button
8.	 We also need to update the button when the page loads with the stored theme

preference. To do that, we’re going to create a new function called initialize()
that runs all the things we want to happen when the page loads and our interface is
initialized.

Create the new function just after the statement that toggles the theme when the user
clicks (onclick):

$toggle.onclick = toggleTheme;

function initialize() {

}

updateButton();
document.body.appendChild($toggle);

9.	 We want the button to update and to be inserted on the page right away, so those
existing statements get moved into initialize():

function initialize() {
 updateButton();
 document.body.appendChild($toggle);
}
updateButton();
document.body.appendChild($toggle);

10.	When the interface is initialized, we also want to load the stored theme value from
localStorage. If the browser has stored a value for the “saved_theme” key, we’ll get
the string value back (“light” or “dark”). If it has not yet been set, the value will be null,
and the user will see the default light theme.

At the top of the function, use localStorage.getItem() to get the value by passing in
the “saved_theme” key we used:

function initialize() {
 let preferred = localStorage.getItem("saved_theme");
 updateButton();
 document.body.appendChild($toggle);
}

11.	Now we’ll use an if conditional to check whether the stored theme value is “dark”. If it
is, we’ll add the value “dark” to the class list in the html element, and the user will see
their preferred dark theme:

function initialize() {
 let preferred = localStorage.getItem("saved_theme");
 if (preferred === "dark") {
 $html.classList.add("dark");
 }

EXERCISE 1. Continued

→

 Web Storage

How and When Our JavaScript Is Processed

7

 updateButton();
 document.body.appendChild($toggle);
}

12.	Finally, call the initialize() function just after its declaration. This will ensure the
function is run when the page loads:

function initialize() {
 // function contents
}
initialize();

13.	Save the JavaScript file and refresh the web page in your browser. Toggle the theme
to dark and hit refresh. Did you notice how the light theme is loaded first, then the dark
theme is applied? That’s because the light theme is the one applied by default. Let’s fix
that.

Step 4:	Fix the flash of the default light theme
14.	Open toast.html and find the script element in the head of the document, just after

the title.

15.	Delete the comment and declare a new variable named saved_theme. Assign it the
value of the stored theme using localStorage.getItem(). Remember to use the same
key name you used in the JavaScript file: “saved_theme”. It’s important to recognize
that the variable saved_theme and the localStorage key “saved_theme” are two
distinct things. Aligning their names, however, can make it easier to mentally associate
the two and how they are being used.

<script>
 const saved_theme = localStorage.getItem("saved_theme");
</script>

16.	Write a conditional (if) that checks to see if the value you got back from localStorage
(saved_theme) equals “dark”. Use the === (identical to) comparison operator for the
check:

const saved_theme = localStorage.getItem("saved_theme");
if (saved_theme === "dark") {

}

17.	If the stored theme is the dark theme, we can apply the “dark” class to the html
element. Inside the body of the conditional, use classList.add(). Since this code
is running before theme-toggle.js is downloaded and run, the $html variable we
declared it in doesn’t exist yet. That’s not a problem, though; you can use document.
documentElement to access the html element:

const saved_theme = localStorage.getItem("saved_theme");
if (saved_theme === "dark") {
 document.documentElement.classList.add("dark");
}

18.	Save the HTML file and go back to the browser. Refresh the page, and you should see
that the dark theme is already applied when the page loads. No waiting!

19.	Okay, it’s time for the final test. The moment of truth! Close your browser entirely (Quit
if you’re on a Mac or Exit if you’re on a Windows machine), then start it up again and
open toast.html. You should see that the dark theme is still applied. Success!

EXERCISE 1. Continued

Learning Web Design, 6th Edition

How and When Our JavaScript Is Processed

8

EXERCISE B. Additional challenge—Store an array

This challenge gives you the opportunity to write code more independently.

In the console, create an array. If you still have the one you made for the second challenge
in Chapter 23, you can use that, or you can create a new array from scratch (say, using
the colors of the rainbow). Now I want you to store that array in localStorage and then
retrieve it back. As I mentioned earlier, localStorage only stores strings, so the challenge
is to make the array a string to store it and then turn it from a string back into an array
when you retrieve it. The key is using the split() method to convert a string of words into
an array:

"one two three".split(" "); // ["one", "two", "three"]

To go from an array to a string, you use the array’s join() method.

["one", "two", "three"].join(" "); // "one two three"

As long as you keep the separator you use (a space, in this case) consistent, you can go
back and forth with ease. Just be aware that if your array items are strings that contain
spaces, you’ll want to use a different separator. I tend to use a series of characters that
rarely appears in my string values: three vertical pipes (“|||”).

This is a challenging one, but you’ve got this!

TEST YOURSELF

Here are a couple of questions to test your knowledge of web storage.

1.	 Which of the following are methods you can use to store or retrieve data
in localStorage?

a.	 getValue()

b.	 setValue()

c.	 setItem()

d.	 getItem()

2.	 When it comes to rendering a page, what happens when the browser
encounters the following script element?

<script src="some.js"></script>

a.	 It downloads the JavaScript in the background and runs it after the
page is finished rendering.

b.	 It stops rendering the page.

c.	 It stops applying CSS.

d.	 It downloads and runs the JavaScript immediately.

 Web Storage

Test Yourself

9

