
IN THIS ARTICLE

Width-based image selection
using w-descriptors

The srcset and sizes attributes

Screen density-based
selection using x-descriptors

The art direction scenario
(picture element)

Alternate image file formats
(picture element)

Author’s Note: This article originally appeared in Chapter 7, Adding Images in Learning
Web Design, 5e. It was removed from the 6th edition due to space limitations, but I have
made it available here to provide additional detail and practice. If you have the 6th edition,
you will find that some text is repeated.

Pretty quickly after smartphones, tablets, and other devices hit the scene, it
became clear that large images that look great on a large screen were overkill
on smaller screens. All that image data…downloaded and wasted. Forcing
huge images onto small devices slows down page display and may cost
real money too, depending on the user’s data plan (and your server costs).
Conversely, small images that download quickly may be blurry on large,
high-resolution screens. Our trusty img element with its single src attribute
just doesn’t cut it in many cases.

The solution is to use responsive images, a technique in which you serve
multiple versions of the same image, provide information about the images
in the markup, then allow the browser to choose and download only the most
appropriate file based on what it knows about the user’s viewing environ-
ment. Screen dimensions are one factor, but resolution, network speed, what’s
already in its cache, user preferences, and other considerations may also be
involved in the brower’s selection.

The primary goal is better performance. The investment in writing extra
markup ensures that data isn’t downloaded unnecessarily. It also provides a
better user experience because you can make sure images are appropriate for
the screen size and are as crisp as possible.

RESPONSIVE IMAGE SCENARIOS

The responsive image techniques address four basic scenarios:

• Providing a set of images of various dimensions for use at different sizes
in a responsive layout

RESPONSIVE
IMAGE MARKUP

Excerpt from:

Learning Web Design, 5e

by Jennifer Robbins
Copyright O’Reilly Media 2018

You provide multiple
images, sized or
cropped for different
screen sizes, and the
browser picks the most
appropriate one based
on what it knows about
the current viewing
environment.

1

• Providing extra-large images that look crisp on high-resolution screens

• Providing versions of the image with varying amount of detail based on
the viewport size (known as the art direction use case)

• Providing alternative image formats that store the same image at much
smaller file sizes

In this article, we’ll look at the markup for accommodating each of these
common use cases.

WIDTH-BASED IMAGE SELECTION
(W-DESCRIPTOR)

When you’re designing a responsive web page, chances are you’ll want images
to resize based on layout or viewport. If you see an image with a significant
difference between its smallest and largest dimensions in the layout, that
should be a clue that the image would benefit from the width-based respon-
sive image technique.

For a browser to download only the most appropriately-sized image from a
set of provided versions, it needs to know:

• What images are available and their actual (intrinsic) widths

• What size the image (img) will appear in the layout

We can provide that information right in the img element with the srcset and
sizes attributes, respectively.

The srcset Attribute
The srcset attribute provides a list of available image files for the browser to
choose from. Its value is a comma-separated list of options. Each item in the
list has two parts: the location (URL) of the image, and a width descriptor
(indicated by a w, also commonly referred to as a w-descriptor) that provides
the actual pixel width of the image. Using srcset with a w-descriptor is
appropriate when the images are identical except for their dimensions (in
other words, they differ only in scale).

Note that the whole list is the value of srcset and goes inside a single set of
quotation marks. This sample shows the structure of a srcset attribute and
its values:

srcset="image1-URL #w, image2-URL #w"

Here’s an example of a srcset attribute that provides four image options
and specifies their respective pixel widths via w-descriptors. I’ve stacked the
options here to make them easier to read. Note again that the whole list is in
a single set of quotation marks:

Learning Web Design, 4th Edition

Width-Based Image Selection (w-descriptor)

2

srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"

The sizes Attribute
That’s a good start, but whenever you use w-descriptors, you also need to
include the sizes attribute that tells the browser what size the image element
will occupy in the layout at various viewport widths. There is a very good rea-
son (in addition to being required in the spec), and it’s worth understanding.

When a browser downloads the HTML document for a web page, the first
thing it does is look through the whole document and establish its outline
structure (its Document Object Model, or DOM). Then, almost immediately,
a preloader goes out to get all the images from the server so they are ready to
go. Finally, the CSS and the JavaScript are downloaded. It’s likely that the style
sheet has instructions for layout and image sizes, but by the time the browser
sees the styles, the images are already downloaded. For that reason, we have
to give the browser a hint with the sizes attribute whether the image will fill
the whole viewport width or only a portion of it. That allows the preloader
to pick the correct image file from the srcset list.

We’ll start with the simplest scenario in which the image is a banner and
always appears at 100% of the viewport width, regardless of the device
(FIGURE A). Here’s the complete img element with the srcset and sizes attri-
butes (note that the src attribute is still required and is used to provide a
fallback image):

<img src="strawberries-640.jpg"
 alt="baskets of ripe strawberries"
 srcset="strawberries-480.jpg 480w,
 strawberries-960.jpg 960w,
 strawberries-1280.jpg 1280w,
 strawberries-2400.jpg 2400w"
 sizes="100vw">

FIGURE A. The image fills 100% of the viewport width, regardless of its size.

The sizes attribute is
required when you use
w-descriptors.

 Responsive Image Markup

Width-Based Image Selection (w-descriptor)

3

In this example, the sizes attribute tells the browser that the image fills the
full viewport by using viewport width units (vw), the most common unit for
the sizes attribute, so the browser can pick the best image for the job. For
example, 100vw translates to 100% of the viewport width, 50vw would be 50%,
and so on. You can also use em, px, and a few other CSS units, but you cannot
use percentages. Browsers that do not support srcset and sizes simply use
the image specified in the src attribute.

Sizing an image to fill the whole width of the browser is a pretty specific case.
More likely, your images will be one component in a responsive page layout
that resizes and rearranges to make best use of the available screen width.
FIGURE B shows a sidebar of food photos that take up the full width of the
screen on small devices, take up a portion of the width on larger devices, and
appear three across in a layout for large browser windows.

FIGURE B. The width of the images changes based on the width of the viewport.

For cases like these, use the sizes attribute to tell the browser something
about how the image will be sized for each layout. The sizes value is a
comma-separated list in which each item has two parts. The first part in
parentheses is a media condition (like those used in media queries) that
describes a parameter such as the width of the viewport. The second part is
a length that indicates the width that image will occupy in the layout if the
media condition is met. Here’s how that syntax looks:

sizes="(media-feature: condition) length,
 (media-feature: condition) length,
 default_width"

I’ve added some media conditions to the previous example, and now we have
a complete valid img element for the first image in FIGURE B:

Browsers that do not
support srcset and sizes
use the image specified in
the src attribute.

Learning Web Design, 4th Edition

Width-Based Image Selection (w-descriptor)

4

<img src="strawberries-640.jpg" alt="baskets of ripe strawberries"
 srcset="strawberries-240.jpg 240w,
  strawberries-480.jpg 480w,
  strawberries-672.jpg 672w"
 sizes="(max-width: 480px) 100vw,
 (max-width: 960px) 70vw,
 240px">

The sizes attribute tells the browser the following:

• If the viewport is 480 pixels wide or smaller (maximum width is 480
pixels), the image fills 100% of the viewport width.

• If the viewport is wider than 480 pixels but no larger than 960 pixels
(max-width: 960px), then the image will appear at 70% of the viewport.
(This layout has 15% margins on the left and the right of the images, or
30% total.)

• If the viewport is larger than 960 pixels and doesn’t meet any of the prior
media conditions, the image gets sized to exactly 240 pixels.

When the HTML loads, the browser checks the width of the viewport and
how big the image will appear within it. It can then select the most appropri-
ate image from the srcset list to download.

How Many Images Do You Need?
One part of the responsive image technique is to provide the set
of images at a range of sizes, but how many and what sizes do
you need? Unfortunately, the answer is not straightforward due
the endless combinations of image sizes and screen densities,
and because browsers vary in how they pick from the available
options. However, there are a few strategies to use as guidelines.

Largest, Smallest, and In-between
If the size range for your image isn’t that large, you might find
that providing small, medium, and large versions is fine. If
there is a large difference, images for more breakpoints may be
required. Or if there is very little difference between endpoints,
one image may suffice. Keep in mind that browsers don’t know
your logic for the image sizes you created; they just pick what
they determine to be the best option. The upshot is you don’t
need to provide an image sized precisely for each breakpoint in
the design. A little scaling up or down is acceptable.

Images Based on File Size
Providing a range of selections based on file size, not pixel
dimensions, may be a more appropriate approach. With
this strategy, the images in the set step up in fixed file size
increments, such as 20 KB or 40 KB. Thankfully, there is tool
that will generate image sets based on file size for you. The

Responsive Image Breakpoints Generator by Cloudinary
(responsivebreakpoints.com) lets you upload a large image,
set the maximum/minimum dimensions, the size step, and the
maximum number of images, and it generates all the images
automatically.

The RespImageLint Bookmarklet
If you have a working prototype of your page (including img
elements that have already been marked up with srcset and
sizes), you can use the RespImageLint bookmarklet created
by Martin Auswöger to generate the optimum sizes value for
you. It works by running a script that resizes your page behind
the scenes and calculates the actual width of the image on a
range of viewport widths. The new sizes value it generates
can be used to replace your initial value and acts as a guide
for generating the images at in-between sizes that make
mathematical sense.

Get the RespImageLint bookmarklet at ausi.github.io/
respimagelint/. Masa Kudamatsu provides an excellent
tutorial on using RespImageLint in a simplified responsive
image workflow in his article “Responsive Images: DIY
Implementation in 6 Steps” (medium.com/web-dev-survey-
from-kyoto/responsive-images-diy-implementation-in-6-
steps-a4342ecbb08).

WARNING

The sizes attribute will resize an image
even if there is no CSS applied to it. If
there is a CSS rule specifying image size
that conflicts with the value of the sizes
attribute, the style rule wins (i.e., it over-
rides the sizes value).

 Responsive Image Markup

Width-Based Image Selection (w-descriptor)

5

There’s a bit more to using sizes than shown here—other media conditions,
additional length units, even the ability to ask the browser to calculate widths
for you. If you plan on using viewport-width-based images in your designs, I
recommend reading the spec to take full advantage of the possibilities.

SCREEN DENSITY-BASED IMAGE
SELECTION (X-DESCRIPTOR)

Using srcset with w-descriptors is by far the most common responsive meth-
od because image sizes tend to be flexible in responsive layouts. However, if
you have an image that stays the same dimensions in the layout, and you
want to swap it out based solely on the device pixel ratio (DPR) of screen, use
srcset with an x-descriptor that indicates the target screen density. The sizes
attribute is not necessary in this scenario.

Before we get to the code, it will be useful to be familiar with device pixel
ratios and how images are displayed on screens.

Device-pixel-ratios
Everything that you see on a screen display is made up of little squares of
colored light called pixels. We call the pixels that make up the screen itself
device pixels (you’ll also sometimes see them referred to as hardware pixels
or physical pixels). Until recently, screens commonly fit 72 or 96 device pixels
in an inch (now 109 to 160 is the norm). The number of pixels per inch (ppi)
is the resolution of the screen.

Bitmapped images, like JPEG, PNG, and GIF, are made up of a grid of pixels
too. It used to be that the pixels in images mapped one-to-one with the device
pixels. An image 100 pixels wide would be laid out across 100 device pixels.
Nice and straightforward.

It should come as no surprise that it’s not so straightforward today.
Manufacturers have been pushing screen resolutions higher and higher in an
effort to improve image quality. The result is that device pixels have been get-
ting smaller and smaller, so small that our images and text would be illegibly
tiny if they were mapped one-to-one.

To compensate, devices use a measurement called a reference pixel (or logical
pixel) for layout purposes. Reference pixels are also known as points (PT)
in iOS, Device Independent Pixels (DP or DiP) in Android, or CSS pixels
because they are the unit of measurement we use in style sheets. A device’s
viewport is measured in reference pixels, independent of how many physical
device pixels make up the screen.

Devices use a
measurement called a
reference pixel for layout
purposes.

Learning Web Design, 4th Edition

Screen Density-Based Image Selection (x-descriptor)

6

The ratio of the number of device pixels to reference pixels is called the
device pixel ratio (DPR) (FIGURE C). Common device pixel ratios on hand-
held devices are 1x, 1.5x, 2x, 2.4x, 3x, and even 4x (the “x” is the convention
for indicating DPR). Even large desktop displays now feature ratios of 2x, 3x,
and 4x (see the sidebar “Prioritize 2x Displays”).

Image or object =
3 x 3 reference or CSS pixels

1:1 device-pixel-ratio (1x)
3 x 3 device pixels, indicated by grid

2:1 device-pixel-ratio (2x)
6 x 6 device pixels

3:1 device-pixel-ratio (3x)
9 x 9 device pixels

FIGURE C. Device pixels compared to CSS/reference pixels.

Let’s say you have an image that you want to appear 200 pixels wide on all
displays. You can make the image exactly 200px wide, and it will look fine
on standard-resolution displays, but it might be a little blurry on high-res-
olution displays. To get that image to look sharp on a display with a device-
pixel-ratio of 2x, you’d need to make that same image 400 pixels wide and
place it in an img element with a width of 200px. It would need to be 600
pixels wide to look as sharp as possible on a 3x display. Unfortunately, the
larger images may have file sizes that are four or more times the size of the
original. Who wants to send all that extra data to a 1x device that really only
needs the smaller image?

Providing Options with srcset
The srcset attribute can also be used to provide a set of image options based
on screen density. When using srcset in the img element for this purpose,
provide the location (URL) of each image along with an x-descriptor that
indicates the target device-pixel-ratio for the image (see Warning).

Let’s look at an example. I have an image of a turkey that I’d like to appear 200
pixels wide. For standard resolution, I created the image at 200 pixels wide

WARNING

You can use w-descriptor or x-descrip-
tors with srcset, but you cannot use a
combination. You’ll need to choose one
depending on whether accommodating
changing image dimensions or screen
density is your priority.

Prioritize 2x Displays
At this point, the vast majority of
smartphones have densities of 2x
or higher, and the percentage of
laptop and desktop monitors with
high-density displays is growing. For
that reason, it is time well invested to
make sure that important photos and
graphics look crisp at higher screen
resolutions by providing images with
higher pixel dimensions.

However, there is evidence that for
photographic images, the human eye
cannot detect the quality difference
between 2x and 3x, so it generally
isn’t worth the extra bytes to create a
version of the image at 3x or higher. In
fact, some designers find that images
created at 1.5x look good enough on
2x displays. For UI elements, logos,
and other small images with crisp
edges, you might decide that a 3x or
4x version helps the image look as
sharp as the surrounding text, but
then again, those types of images
are better handled with vector-based
SVGs.

The upshot is that when creating
image sets for a responsive image, it
is recommended that you provide a
version for 2x displays but probably
not any larger.

 Responsive Image Markup

Screen Density-Based Image Selection (x-descriptor)

7

and named it turkey-200px.jpg. I’d also like it to look crisp in high-resolution
displays, so I have two more versions: turkey-400px.jpg (for 2x) and turkey-
600px.jpg (for 3x). Here is the markup for adding the image and indicating
its high-density equivalents with x-descriptors:

<img src="/images/turkey-200px.jpg" alt=""
 srcset="/images/turkey-400px.jpg 2x,
 /images/turkey-600px.jpg 3x" >

Browsers check the screen resolution and download what they believe to be
the most appropriate image. If the browser is on a device with a 2x display,
it may download image-400px.jpg. If the device-pixel-ratio is 1.5x, 2.4x, or
something else, it checks the overall viewing environment and makes the
best selection. It is important to know that when we use srcset with the
img element, we are handing the keys to the browser to make the final image
selection.

ART DIRECTION (THE PICTURE ELEMENT)

So far, we’ve looked at image selection based on the size of the viewport and
the resolution of the screen. In both of these scenarios, the content of the
image does not change but merely resizes.

But sometimes, resizing isn’t enough. You might want to crop into important
details of an image when it is displayed on a small screen. You may want to
change or remove text from the image if it gets too small to be legible. Or you
might want to provide both landscape (wide) and portrait (tall) versions of
the same image for different layouts.

For example, in FIGURE 7-D, the whole image of the table as well as the dish
reads fine on larger screens, but at smartphone size, it gets difficult to see the
delicious detail. It would be nice to provide alternate versions of the image
that make sense for the browsing conditions.

This scenario is known as an art-direction-based selection and it is accom-
plished with the picture element. The picture element has no attributes; it
is just a wrapper for some number of source elements and an img element.
The img element is required and must be the last element in the list. If the img
is left out, no image will display at all because it is the piece that is actually
placing the image on the page. Let’s look at a sample picture element and
then pick it apart:

<picture>
 <source media="(min-width: 1024px)" srcset="icecream-large.jpg">
 <source media="(min-width: 760px)" srcset="icecream-medium.jpg">
 <img src="icecream-small.jpg" alt="hand holding ice cream cone and
text that reads Savor the Summer">
</picture>

This example tells the browser that if the viewport is 1024 pixels wide or
larger, use the large version of the ice cream cone image. If it is wider than

<picture>…</picture>
Specifies a number of image options

<source>…</source>
Specifies alternate image sources

Learning Web Design, 4th Edition

Art Direction (the picture Element)

8

760 pixels (but smaller than 1024, such as on a tablet), use the medium ver-
sion. Finally, for viewports that are smaller than 760 pixels and therefore
don’t match any of the media queries in the previous source elements, the
small version should be used (FIGURE 7-E). The small version, as specified

That dinner looks delicious on desktop browsers.
(1280px wide)

Detail is lost when the full image is
shrunk down on small devices.
(300px wide)

Cropping to the most important detail
may make better sense.
(300px wide)

FIGURE D. Some images are illegible
when resized smaller for mobile
devices.

FIGURE E. The picture element
provides different image versions to be
sourced at various screen sizes.

iPhone iPad Chrome browser on desktop

 Responsive Image Markup

Art Direction (the picture Element)

9

in the img element, will be used for browsers that do not recognize picture
and source.

Each source element includes a media attribute and a srcset attribute. It
can also use the sizes attribute, although that is not shown in the previous
example. The media attribute supplies a media query for checking the cur-
rent browsing conditions. It is similar to the media conditions we saw in the
earlier srcset example, but the media attribute specifies a full-featured CSS
media query. The srcset attribute supplies the URL for the image to use if
the media query is a match. In the previous example, there is just one image
specified, but it could also be a comma-separated list if you wanted to pro-
vide several options using w- or x-descriptors.

Browsers download the image from the first source that matches the cur-
rent conditions, so the order of the source elements is important. The URL
provided in the srcset attribute gets passed to the src attribute in the img
element. Again, it’s the img that places the image on the page, so don’t omit
it. The alt attribute for the img element is required, but alt is not permitted
in the source element.

Art direction is the primary use case for the picture element, but let’s look at
one more thing it can do to round out our discussion on responsive images.

ALTERNATIVE IMAGE FORMATS
(THE TYPE ATTRIBUTE)

Once upon a time, in the early 1990s, the only image type you could put on a
web page was a GIF. JPEGs came along not long after, and we waited nearly
a decade for reliable browser support for the more feature-rich PNG format.
It takes a notoriously long time for new image formats to become universally
supported. In the past, that meant simply avoiding newer formats.

In an effort to reduce image file sizes, more efficient image formats have been
developed—such as WebP, AVIF, and JPEG-XL—that can compress images
significantly smaller than their JPEG and PNG counterparts. And once again,
some browsers support them and some don’t. We can use the picture ele-
ment to serve the newer image formats to browsers that can handle them, and
a standard image format to browsers that can’t. We no longer have to wait for
universal browser support.

In the following example, the picture element specifies two image alterna-
tives before the fallback JPEG listed in the img element:

<picture>
 <source type="image/avif" srcset="pizza.avif">
 <source type="image/wwbp" srcset="pizza.webp">

</picture>

Learning Web Design, 4th Edition

Alternative Image Formats (the type Attribute)

10

For image-format-based selections, each source element has two attributes:
the srcset attribute that we’ve seen before, and the type attribute for specify-
ing the type of file (also known as its MIME type, see the “File (MIME) Types”
sidebar). In this example, the first source points to an image that is in the
AVIF format, and the second specifies a WebP. Again, the browser uses the
image from the first source that matches the browser’s image support, so it
makes sense to put them in order from smallest to largest file size.

WRAPPING UP RESPONSIVE IMAGES

This has been a long discussion about responsive images, and we’ve really
only scratched the surface. We’ve looked at how to use the img element with
srcset and sizes to make pixel-ratio-based and viewport-size-based selections.
We also saw how the picture element can be used for art-direction-based and
image-type-based selections.

I’ve kept my examples short and sweet, but know that it is possible to com-
bine techniques in different ways, often resulting in a tower of code for each
image. Because the code for each responsive image can get a bit cumbersome,
many developers automate the responsive image process by using an Image
CDN that generates images at the appropriate sizes on the fly.

If you’d like to get a deeper understanding of reponsive image markup and
strategies, I recommend the following resources:

• “The Ultimate Guide to Responsive Images on the Web,” by Anna Monus
(debugbear.com/blog/responsive-images)

• The 10-part “Responsive Images 101” tutorial by Jason Grigsby (cloudfour.
com/thinks/responsive-images-101-definitions/).

• “Responsive Images Done Right: A Guide to picture and srcset,” by
Eric Portis (smashingmagazine.com/2014/05/responsive-images-done-right-
guide-picture-srcset/)

• “What Is an Image CDN—the Complete Guide,” by Rahul Nanwani
(imagekit.io/blog/what-is-image-cdn-guide/)

File (MIME) Types
The web uses a standardized
system to communicate the type
of media files being transferred
between the server and browser.
It is based on MIME (Multipurpose
Internet Mail Extension), which was
originally developed for sending
attachments via email. Every file
format has a standardized type (such
as image, application, audio, or
video), subtype that identifies the
specific format, and one or more
file extensions. In our example, the
type attribute specifies the WebP
option with its type/subtype (image/
webp) and uses the proper file
extension (.webp). Other examples
of media MIME types are image/
jpeg (extensions .jpg, .jpeg), video/
mpeg (extensions .mpg, .mpe, .mpeg,
.m1v, .mp2, .mp3, and .mpa), and
application/pdf (.pdf). The
complete listing of registered MIME
types is published by the IANA
(Internet Assigned Numbers Authority)
at www.iana.org/assignments/
media-types.

 Responsive Image Markup

Wrapping up Responsive Images

11

