
by Aaron Gustafson

Author’s Note: This article supplements Chapter 25, Next-Level JavaScript in Learning
Web Design, 6e.

Synchronous code is expected to execute immediately and each statement
in your program is evaluated before the program moves on to the next state-
ment. Consider this example:

let volume = 10;
volume++;
console.log(volume); // 11

Here, the first statement declares the volume variable and assigns it a value of
10. The second statement takes that value and increments it by 1, making the
value of volume 11. The third statement logs the value of volume to the console.

This approach is fine for operations like this that execute quickly, but some-
times the task you need to do will take an indeterminate amount of time to
complete. It might be an extensive math calculation that takes a while to run.
You might need to get contents of a file on the web, where network conditions
and the file’s size will impact how long it takes to get the file. Or maybe you
need to get some records from a database. These tasks take time and if you
were to do them with synchronous code, it would make a browser unrespon-
sive until the task was complete. That’s not the kind of experience that’s going
to make any user happy.

To address this challenge, JavaScript added support for running code asyn-
chronously (or “async”). Asynchronous code relies on a special kind of object
called a Promise. A Promise type keeps tabs on whatever the expensive opera-
tion is, but it doesn’t hold up the remainder of your code from executing.

PROMISES AND
ASYNCHRONOUS
CODE

Excerpt from:

Learning Web Design, 6e

by Jennifer Robbins
with contributions by Aaron Gustafson
Copyright O’Reilly Media 2025

NOTE

Variables and functions that I have cre-
ated and named appear in orange. You
can assume that keywords, operators,
variables, and functions not in orage
are part of the built-in functionality of
JavaScript.

1

To illustrate how it works, I’m going to use a built-in JavaScript method called
setTimeout() to stand in for a long-running operation. In the code below, I’ve
set it up so that the Promise will take 1 second to resolve (i.e., complete with-
out error) and when it resolves, the value of volume will be incremented by 1.
Then it will log the new value of volume to the console.

let volume = 10;
new Promise(function(resolve){
 setTimeout(function() {
 resolve(volume++);
 }, 1000);
}).then(function(){
 console.log(volume); // 11
});

Here I’ve replaced the statement that increments the value of volume with
a statement that creates a new Promise using the Promise() constructor.
A constructor is what you use to create new instances of a particular object
type, in this case a Promise object. Whenever you see the new keyword, it sig-
nals you’re using a constructor.

The value you pass into a Promise constructor is a function. That function
will receive two arguments from the Promise. The first is a function you can
use to resolve the Promise. The second is a function you can use to reject the
Promise (which is what we call it when the code in the Promise fails). You
could technically name these arguments whatever you want — it’s your func-
tion to define — but developers typically call them resolve() and reject()
for clarity.

Within the function I’ve defined is the delayed — using setTimeout() —
increment statement. I could have incremented volume in one statement and
then called resolve in a separate statement, but you can also pass an argu-
ment to resolve(), so I chose to do it all in a single statement.

To log the correct value to the console, we need to wait for the Promise to
resolve. Thankfully, a Promise has a then() method which will be called when
that happens. To prepare code for that, you call then() and pass it a function
as an argument and that function will be run when the Promise resolves. In
this example, that’s where I log the value of volume to the console.

If I copied all this code, pasted it into the JavaScript console in my browser,
and ran it, nothing would happen for a second. Then, as if by magic, the value
11 would get logged to the console (see FIGURE A).

This was an incredibly contrived example, but it illustrates how we can
begin thinking about JavaScript running on multiple, independent timelines
instead of one. It also provides a path for us to improve our users’ experi-
ences by not locking up their browser when we need to do more intensive
JavaScript operations like fetching content from other servers or querying
databases.

NOTE:

setTimeout() takes two arguments.
The first is the function you want to run.
The second is the number of millisec-
onds you want to wait before running
that function. In my case the function
is an anonymous function that incre-
ments volume. I’ve set it to run after 1
second, which is 1000 milliseconds.

Learning Web Design, 6th Edition

Learning Web Design, 6e

2

FIGURE A. In this screenshot from the console, I’ve pasted and run the Promise
example, which resolves to a pending Promise. Then, after a second, the value 11
appears in the log above the prompt.

As you begin doing more advanced JavaScript work, you’ll encounter
Promises all over the place. Service Workers make extensive use of them as
do JavaScript frameworks. For more on how they work and some excellent
exercises that walk you through using them, check out “What is a Promise?
JavaScript Promises for Beginners” by Kingsley Ubah (www.freecodecamp.
org/news/what-is-promise-in-javascript-for-beginners/).

 Promises and Asynchronous Code

Learning Web Design, 6e

3

