
IN THIS ARTICLE

Using a transparent image
to create a wrap shape

Adding space between
the image and the

wrapping text

Using paths [circle(),
ellipse(), and polygon()]

to create a wrap shape

Author’s Note: This article originally appeared in “Chapter 15, Floating and Positioning” in
Learning Web Design, 5e. It was removed from the 6th edition due to space limitations, but
I have made it available here to provide additional detail and practice. Be aware that some
information may be out of date.

Look at the previous float examples and you will see that the text always
wraps in a rectangular shape around a floated image or element box.
However, you can change the shape of the wrapped text to a circle, ellipse,
polygon, or any image shape using the shape-outside property. This is an
up-and-coming CSS feature, so be sure to check the Browser Support Note.
Following is a quick introduction to CSS Shapes, which should inspire and
prepare you for more exploration on your own.

shape-outside

Values: 	 none | circle() | ellipse() | polygon() | url() | [margin-box | padding-
box | content-box]

Default: 	 none

Applies to: 	 floats

Inherits: 	 no

FIGURE A shows the default text wrap around a floated image (left) and the
same wrap with shape-outside applied right). This is the kind of thing you’d
expect to see in a print magazine, but now we can do it on the web!

It is worth noting that you can change the text wrap shape around any floated
element (see Note), but I will focus on images in this discussion, as text ele-
ments are generally boxes that fit nicely in the default rectangular wrap.

TEXT WRAP WITH
CSS SHAPES

Excerpt from:

Learning Web Design, 5e

by Jennifer Robbins
Copyright O’Reilly Media 2018

NOTE

shape-outside only works on floated
elements for now, but it is believed that
will change in the future.

1

FIGURE A. Example of text wrapping around an image with shape-outside

There are two approaches to making text wrap around a shape. One way is to
provide the path coordinates of the wrap shape with circle(), ellipse(), or
polygon(). Another way is to use url() to specify an image that has transpar-
ent areas (such as a GIF or a PNG). With the image method, text flows into
the transparent areas of the image and stops at the opaque areas. This is the
shape method shown in FIGURE A and the method I’ll introduce first.

Using a transparent image
In the example in FIGURE A, I placed the sundae.png image in the HTML
document to display on the page, and I’ve specified the same image in the
style rule using url() so that its transparent areas define the wrap shape. It
makes sense to use the same image in the document and for the CSS shape,
but it is not required. You could apply a wrap shape derived from one image
to another image on the page.

THE MARKUP

<p> In places…</p>

THE STYLES

img.wrap {
 float: left;
 width: 300px;
 height: 300px;
 -webkit-shape-outside: url(sundae.png); /* prefix required
in 2018 */
 shape-outside: url(sundae.png);

Notice that the wrapped text is now bumping right into the image. How
about we give it a little extra space with shape-margin?

Default text wrap Text wrap with shape-outside using the
transparent areas of the image as a guide

WARNIN G

There is a security setting in Chrome
and Opera that make image-based text
wraps a little tricky to use. Without get-
ting into too much sys-admin detail, the
browser restricts the use of the image
used to create the CSS shape if it isn’t on
the same domain as the file requesting it.
This is not a bug; they are following the
rules set out in the specification.

The rule also means that compliant
browsers won’t allow images to be used
for shapes when the files are served
locally (i.e. on your own computer). They
need to be uploaded to a server to work,
which makes the design process a little
more cumbersome, especially for begin-
ners.

If you use image-based text wraps, you
know your CSS is written correctly, but
you aren’t seeing wrapping in the brows-
er, this security setting (related to Cross
Origin Resource Sharing, CORS, if you’re
curious) is probably the culprit.

Learning Web Design, 5th Edition

Learning Web Design, 5e

2

shape-margin

Values: 	 length | percentage

Default: 	 0

Applies to: 	 floats

Inherits: 	 no

The shape-margin property specifies an amount of space to hold between the
shape and the wrapped text. In FIGURE B, you can see the effect of adding 1em
of space between the opaque image areas and the wrapped text lines. It gives
it a little breathing room the way any good margin should.

-webkit-shape-margin: 1em;
shape-margin: 1em;

FIGURE B. Adding a margin between the shape and the wrapped text.

Using a path
The other method for creating a text wrap shape is to define it using one of
the path keywords: circle(), ellipse(), and polygon().

Here is a code sample that creates a circle shape for the text to wrap around.
The value provided in the circle() notation represents the length of the
radius of the circle.

circle(radius)

In this example, the radius is 150px, half of the image width of 300 pixels. By
default, the circle is centered vertically and horizontally on the float.

img.round {
 float: left;
 -webkit-shape-outside: circle(150px);
 shape-outside: circle(150px);
}

FIGURE C shows this style rule applied to different images. Notice that the
transparency of the image is not at play here. It’s just a path overlaid on the
image that sets the boundaries for text wrap. Any path can be applied to any
image or other floated element.

Opacity Threshold
If you have a source image with
multiple levels of transparency,
such as the gradient shadow
the shape-image-threshold
property allows text to creep
into the image but stop
when it encounters a specific
transparency level. The value
of this property is a number
between 0 and 1, representing a
percentage of transparency. For
example, if you set the threshold
to .2, text will wrap into areas that
are up to 20% transparent, but
stop when it gets to more opaque
levels.

 Text Wrap with CSS Shapes

Learning Web Design, 5e

3

FIGURE 15-C. The same circle() shape applied to different images in the source.

This is a good point to demonstrate a critical behavior of wrap shapes. They
allow text to flow into the floated image or element, but they cannot hold
space free beyond it.

In the example in FIGURE D, I’ve increased the diameter of the circle path
from 150px to 200px. Notice that the text lines up along the right edge of the
image, even though the circle is set 50 pixels beyond the edge. The path does
not push text away from the float. If you need to keep wrapped text away
from the outside edge of the floated image or element, apply a margin to the
element itself (it will be the standard rectangular shape, of course).

img.round {
 float: left;
 -webkit-shape-outside: circle(200px);
 shape-outside: circle(200px);
}

200px radius

FIGURE D. CSS shapes allow text to wrap into the floated element but do not hold
space beyond it.

CSS shapes allows text
to wrap into floated
elements, but do not
push text away from
them.

Learning Web Design, 5th Edition

Learning Web Design, 5e

4

Elliptical shapes are created with the ellipse() statement that provides the
horizontal and vertical radius lengths followed by the word “at” then the x,y
coordinates for the center of the shape. Here is the syntax:

ellipse(rx ry at x y);

The position coordinates can be listed as a specific measurement or a per-
centage. Here I’ve created an ellipse with a 100-pixel horizontal radius and
a 150-pixel vertical radius, centered in the floated element it is applied to
(FIGURE E):

img.round {
 float: left;
 -webkit-shape-outside: ellipse(200px 100px at 50% 50%);
 shape-outside: ellipse(200px 100px at 50% 50%);
}

The edges of the image (blue) and
ellipse path (dotted orange) revealed

FIGURE E. An elliptical text wrap created with ellipse().

Finally, we come to polygon(), which lets you create a custom path using
a series of comma-separated x,y coordinates along the path. The style rule
below creates the wrap effect shown in FIGURE F.

img.wrap {
 float: left;
 width: 300px;
 height: 300px;
 shape-outside: polygon(0px 0px, 186px 0px, 225px 34px,
300px 34px, 300px 66px, 255px 88px, 267px 127px, 246px
178px, 192px 211px, 226px 236px, 226px 273px, 209px 300px,
0px 300px);
}

 Text Wrap with CSS Shapes

Learning Web Design, 5e

5

The edges of the image (blue) and
polygon path (dotted orange) revealed

FIGURE F. A custom path created with polygon()

Holy coordinates! That’s a lot of numbers, and my path was fairly simple. I’d
like to be able to point you to a great tool for drawing and exporting polygon
paths, but sadly, as of this writing I have none to recommend (see Note). I
gathered the coordinates for my polygon examples by opening the image in
Photoshop and gathering them manually, which although possible, is defi-
nitely not ideal.

CSS Shapes resources
There are some finer points regarding CSS Shapes that I must leave to you to
research further. Here are a few resources to get you started.

§	 CSS Shapes Module, Level 1 (w3.org/TR/css-shapes-1/)

§	 “Getting Started with CSS Shapes” by Razvan Caliman (html5rocks.
com/en/tutorials/shapes/getting-started)

§	 CSS Shapes at The Experimental Layout Lab of Jen Simmons (labs.
jensimmons.com/#shapes)

§	 “A Redesign with CSS Shapes” by Eric Meyer (alistapart.com/article/
redesign-with-css-shapes)

T I P

If you search for “CSS Shapes” you will
certainly come across that term used
for a technique that uses CSS to draw
geometric shapes such as triangles,
arrows, circles, and so on. It’s a little
confusing, although those other “CSS
shapes” are pretty nifty and something
you might want to tinker with.

Learning Web Design, 5th Edition

Learning Web Design, 5e

6

