
IN THIS ARTICLE

Two- and three-column layouts
using floats

A source-independent layout
using floats

A three-column layout using
absolute positioning

Top-to-bottom “faux” column
backgrounds

CSS Grid and Flexbox (see Note) were designed from the ground up to give
designers control over page layout, and now that those standards have solid
browser support, they are definitely the way to go moving forward. However,
we are still in a time of transition. Older, non-supporting browsers (Internet
Explorer in particular) have a way of stubbornly hanging around, and as long
as they continue to show up in significant numbers in our visitor statistics,
we need to provide reasonable fallbacks for our Grid- and Flexbox-based
designs. That’s where knowing the old float- and position-based layout tech-
niques may still come in handy.

I’ve made this article (originally a chapter from the fourth edition of Learning
Web Design) available should you need to support old browsers that support
neither Grid nor Flexbox. Otherwise, these techniques should be considered
obsolete and should be avoided in favor of proper layout standards.

This article contains templates and techniques for the following:

• Two- and three-column layouts using floats

• A source-independent layout using floats and negative margins

• A multicolumn layout using positioning

To get the most out of the examples, you will need a solid understanding of
how floating and positioning work, as presented in Chapter 15, Floating and
Positioning, in Learning Web Design, 5e.

The examples in this article are intended to be a “starter kit.” They should
give you a good head start toward understanding how layout works, but they
are not universal solutions. The templates presented here are simplified and
may not work for every situation, although I’ve tried to point out the relevant
shortcomings of each. Your content may dictate more complicated solutions.

PAGE LAYOUT
WITH FLOATS AND
POSITIONING

For use with:

Learning Web Design, 5e

by Jennifer Robbins
Copyright O’Reilly Media 2018

NOTE

I cover Grid and Flexbox in detail in
Chapter 16, CSS Layout with Flexbox
and Grid, of Learning Web Design, 5e
(O’Reilly).

1

MULTIPLE COLUMNS USING FLOATS

The truth is, floats were never intended to be a page layout tool. But just as
tables were co-opted before them, the development community put floats to
use for columns because it was one of the only options we had. These days,
we have better options, but if you need to support older browsers, you may
still want to have a few floated column tricks up your sleeve.

The advantages that floats have over absolute positioning for layout are
that they prevent content from overlapping other content, and they make it
easier to keep footer content at the bottom of the page. The drawback is that
they are dependent on the order in which the elements appear in the source,
although there is a workaround using negative margins, as we’ll see later.

This section provides templates and techniques for creating a variety of stan-
dard column page layouts using floats, including the following:

• A two-column fluid layout

• A two-column layout with a fixed width

• A two-column layout with a fixed width, centered

• A three-column fluid layout

• A three-column layout that is not tied to the source order of the document

How to Use the Examples
The sample pages in this section aren’t pretty. In fact, I’ve
stripped them down to their bare minimum to help make the
structure and strategy as clear as possible. Here are a few notes
regarding the templates and how to use them.

Simplified markup and styles

I’ve included only the bare minimum markup and styles
in the examples—just enough to follow how each layout
is created. All style rules not related to layout have been
omitted to save space and to keep the focus on what is
needed to move elements around.

Headers and footers

I’ve included a header and footer on many of these examples,
but either one or both could easily be omitted for a minimal
two- or three-column layout.

Color-coding

I’ve added outlines around each column (using the outline
property) so you can see the edges of the floated or

positioned elements in the layout. The outlines are color-
coded with the markup and the styles that create them in an
effort to make the connections clearer.

Padding and borders

To keep width calculations simple, I’ve avoided using padding
and borders on the column elements in the examples. Setting
the box-sizing model to border-box will allow you to use
padding and margins without recalculating widths. However,
if you use the content-box model in your designs, be sure to
compensate for the extra width so the overall width does not
exceed 100%.

Customization

There is obviously a lot more that could be done with text,
backgrounds, margins, padding, and borders to make
these pages more appealing. Once you’ve laid a framework
with these templates, you should feel free to change the
measurements and add your own styles.

Multiple Columns Using Floats

2 Learning Web Design, 5e

Two Columns, Fluid Layout
In this section, we’ll look at two methods for creating a fluid layout. In fluid
layouts, the page area and columns resize proportionally to fill the available
space in the browser, consistent with the behavior of the normal flow. Widths
in fluid layouts are generally specified in percentage values; however, it is
also possible to make one or more columns a fixed width and allow the
other column(s) to fill the remaining width of the viewport (also known as
a hybrid layout).

I’ve included two techniques for creating two-column, fluid layouts:

• Floating one element and using a margin on the second to clear a space
for it.

• Floating all the elements to one side. You can float columns to the left or
right depending on the source order in your document and where you
want each column to appear on the page.

One float with a margin
Let’s start with a simple one-float approach.

THE STRATEGY

Float one column element to the right or left and add a margin on the
remaining column element. Clear the footer element to keep it at the bot-
tom of the page. The underlying structure and resulting layout is shown in
FIGURE A.

header

main

aside

footer

Source order Layout

FIGURE A. Two columns created with one float and a margin.

CSS Outlines
In the examples in this section, I’ve
taken advantage of the outline
property to reveal the edges of the
floated and positioned columns.
Outlines look like borders, and the
syntax is the same, but there is
an important difference. Outlines,
unlike borders, are not calculated
in the width of the element box.
They just lay on top, not interfering
with anything. This makes outlines
a great tool for checking your layout
work because you can turn them on
and off without affecting your width
measurements.

The outline declaration looks a lot
like the declaration for borders:

div#links {
 outline: 3px dashed red;
}

Page Layout with Floats and Positioning

Multiple Columns Using Floats

3

THE MARKUP

<header>Masthead and headline</header>

<main>Main article</main>

<aside>List of links and news</aside>

<footer>Copyright information</footer>

THE STYLES

main {
 float: left;
 width: 60%;
 margin: 0 5%;
}
aside {
 width: 25%;
 margin-left: 70%;
}
footer {
 clear: left;
}

NOTES

This one is pretty straightforward, but because this is our first one, I’ll point
a few things out:

• Remember that I’ve omitted the styles for the header, footer, and text to
keep the examples as simple as possible. Keep in mind that there is a bit
more at work in here than what is listed under “The styles” (nothing
you couldn’t figure out, though: background colors, padding, stuff like
that). There are also 3px dashed outlines applied to the main and aside
elements to make the structure clearer in the figure. This is true for all
examples in this article.

• The source document has been divided into elements: header, main,
aside, and footer. The markup shows the order in which they appear in
the source.

• The main element has been floated to the left and given a width of 60%
with 5% margins on the left and right sides.

• The aside element has been wrapped around the main element. It has a
left margin of 70%, enough to make room for the main element box (60%
box width plus 10% margin width).

• The footer is cleared so it starts below the floated content.

Multiple Columns Using Floats

4 Learning Web Design, 5e

Floating both columns

THE STRATEGY

Set widths on both column elements and float them to the left. Clear the
footer to keep it at the bottom of the page. The underlying structure and
resulting layout is shown in FIGURE B.

header

main

aside

footer

Source order Layout

FIGURE B. Floating two columns.

THE MARKUP

<header>Masthead and headline</header>

<main>Main article</main>

<aside>List of links and news</aside>

<footer>Copyright information</footer>

THE STYLES

main {
 float: left;
 width: 60%;
 margin: 0 5%;
}
aside {
 float: left;
 width: 25%;
 margin: 0 5% 0 0;
}
footer {
 clear: left;
}

NOTES

This one has the same visual result as the first two-column
example, which goes to show you that there are often mul-
tiple approaches to a single design goal. In this approach:

• Both main and aside have been floated to the left.
Because they are floats, widths were specified for each.
You can make your columns as wide as you like.

• The main element has a 5% margin applied on the left
and right sides. The aside element needs a margin only
on the right. The margins on the top have been set to 0
so they vertically align.

• The footer is cleared so it starts below the floated content.

T I P

You could also float one column to the left and the other to the
right for the same effect.

Page Layout with Floats and Positioning

Multiple Columns Using Floats

5

Two Columns, Fixed Width
This time, we’ll make the layout fixed width instead of fluid. Fixed-width
layouts, as the name implies, are set at a specific pixel width. They are less
useful on smaller mobile devices where fluid layouts provide more flexibility;
but on larger, desktop monitor sizes, they can prevent content from getting
too wide to read comfortably.

I’ll show you two options:

• A left-aligned fixed-width layout (default)

• A centered fixed-width layout

Left-aligned, fixed-width layout

THE STRATEGY

Wrap the entire page in a div set to a specific pixel width. We’ll specify pixel
values for the floated elements as well, but the floating and clearing method
is the same. The resulting layout is shown in FIGURE C.

THE MARKUP

<div id="wrapper">

 <header>Masthead and headline</header>

 <main>Main article</main>

 <aside>List of links and news</aside>

 <footer>Copyright information</footer>

</div>

THE STYLES

#wrapper {
 width: 960px;
}
main {
 float: left;
 width: 650px;
 margin: 0 20px;
}
aside {
 float: left;
 width: 250px;
 margin: 0 20px 0 0;
}
footer {
 clear: left;
}

NOTES

• All of the content is contained in a div (#wrapper) that has been set to
960 pixels wide.

Say “Enough Is Enough”
with max-width
Fluid layouts are great because
they can adapt themselves to the
screen or browser window size on
which they are displayed. We spend
a lot of time considering how our
pages fare in small spaces, but
don’t forget that at the other end
of the spectrum are high-resolution
monitors approaching or exceeding
2,000 pixels in width. Users may not
maximize their browser windows to
fill the whole screen, but there is the
potential for the browser window to
be so wide that the text in your flexible
columns becomes difficult to read.

You can put a stop to the madness
with the max-width property. Apply
it to the column element you are
most concerned about becoming
unreadable (like the main column in
the “Two Columns, Fluid Layout”
example), or put the whole page in a
wrapper element and put the brakes
on the width of the whole page.

Similarly, the min-width property is
available if you want to prevent your
page from looking too scrunched.

Multiple Columns Using Floats

6 Learning Web Design, 5e

• I’ve changed the widths and margins to pixel measurements as well, tak-
ing care not to exceed a total of 960. If they added up to more than the
width of the #wrapper container, we’d get the dreaded float drop. Keep in
mind that if you add padding or borders, the total of their widths would
need to be subtracted from the width values to keep the total width the
same unless you use the border-box box-sizing model.

Centered, fixed-width layout
At this point, it’s really easy to center the fixed-width layout.

THE STRATEGY

Set the left and right margins on the #wrapper container to auto, which keeps
the whole page centered. The markup is exactly the same as in the previous
example. We only need to add a margin declaration to the styles. Easy as pie.
The resulting layout is shown in FIGURE D.

THE STYLES

#wrapper {
 width: 960px;
 margin: 0 auto;
}

NOTES

• The auto margin setting on the left and right sides keeps the #wrapper
centered in the browser window.

Source order Layout

header

#wrapper

main

aside

footer

FIGURE C. A fixed width, two-column layout using floats.

Page Layout with Floats and Positioning

Multiple Columns Using Floats

7

Full-Width Headers and Footers
If you want the header and footer to be the full browser width,
but also want to keep the content between them fixed width
and centered (FIGURE E), change the markup so that only the
main and aside elements are inside the #wrapper.

<header>Masthead and headline</header>
<div id="wrapper">
 <main>Main article</main>
 <aside>List of links and news</aside>
</div>
<footer>Copyright information</footer>

FIGURE E. The header and footer fill the width of the
browser, but the content between them remains a fixed width.

Source order Layout

header

#wrapper

main

extras

footer

FIGURE D. Our fixed-width layout is now centered in the browser window.

Multiple Columns Using Floats

8 Learning Web Design, 5e

Three Columns, Fluid Layout
I suspect you’re getting the hang of it so far. Now we’ll tackle three-column
layouts, which use the same principles but take a little extra finagling. In this
example, we’ll float all of the elements to the left. You will see that we are tied
to the order in which the three floated elements appear in the source.

THE STRATEGY

Set widths on all three-column elements and float them to the left. Clear
the footer to keep it at the bottom of the page. The underlying structure and
resulting layout is shown in FIGURE F.

Source order Layout

header

main

#news

#links

footer

FIGURE F. A fluid-width, three-column layout using three floats.

THE MARKUP

 <header>Masthead and headline</header>
 <div id="links">List of links</div>
 <main>Main article</main>
 <div id="news">News items</div>
 <footer>Copyright information</footer>

NOTES

• The markup shows that we now have a total of five sections in the docu-
ment: header, #links, main, #news, and footer.

• Using floats alone, if we want the main content column to appear in
the middle between the links and news columns, then the main element
needs to appear between the #links and #news divs in the source. All three
columns are given widths and floated to the left. Care must be taken to
ensure that the total of the width and margin measurements is not greater
than 100%.

THE STYLES

#links {
 float: left;
 width: 22.5%;
 margin: 0 0 0 2.5%;
}
main {
 float: left;
 width: 45%;
 margin: 0 2.5%;
}
#news {
 float: left;
 width: 22.5%;
 margin: 0 2.5% 0 0;
}
footer {
 clear: left;
}

Page Layout with Floats and Positioning

Multiple Columns Using Floats

9

“Any Order” Columns Using Negative Margins
When float-based layouts were beginning to gain steam, many designers
wondered, “Is there a way to do three-column floats that is independent of
the source order?” It turns out the answer was “Yes!” The trick is to use the
magic of negative margin values and a heaping tablespoon of math (a little
bit of math never hurt anyone, right?). The technique was first brought to
light by Alex Robinson in his classic 2005 article “In Search of the One True
Layout” (positioniseverything.net/articles/onetruelayout/). See also Matthew
Levine’s article “In Search of the Holy Grail” on A List Apart (alistapart.com/
article/holygrail).

L AYO U T T I P

You can avoid this whole ordering conundrum by using Flexbox or Grid for columns
instead of hacking floats, as this “holy grail” approach clearly does. You can change
the display order of flex items and to place grid items in any cell area you choose.

T I P

Floating the Other Direction
You could also arrange the columns so “News” is on the left and “Links” is on the
right by floating the three elements to the right instead of the left. FIGURE G
shows the results of floating the column elements to the right inside a fixed-width,
centered layout.

FIGURE G. The resulting fixed-width layout with swapped side columns.

Multiple Columns Using Floats

10 Learning Web Design, 5e

THE STRATEGY

Apply widths and floats to all three column elements, and use a negative
margin to “drag” the third column across the page into the left position. The
underlying structure and resulting layout is shown in FIGURE H. Notice that
although main comes first in the source, it is in the second-column position.
In addition, the #links div (last in the source) is in the first-column position
on the left. This example is fixed, but you can do the same thing with a fluid
layout by using percentage values.

Source order Layout

header

main

#news

#links

footer

#wrapper

FIGURE H. A fixed-width, three-column layout using three floats. It looks like the
previous example, but it is special in that the column order is not the same as the
source order.

THE MARKUP

<div id="wrapper">

 <header>Masthead and headline</header>

 <main">Main article</main>

 <div id="news">News items</div>

 <div id="links">List of links</div>

 <footer>Copyright information</footer>

</div>

THE STYLES

#wrapper {
 width: 960px;
 margin: 0 auto;
}
main {
 float: left;
 width: 520px;
 margin-top: 0;
 margin-left: 220px;
 margin-right; 20px;
}
#news {
 float: left;
 width: 200px;
 margin: 0;
}

#links {
 float: left;
 width: 200px;
 margin-top: 0;
 margin-left: -960px;
}
footer {
 clear: left;
}

Page Layout with Floats and Positioning

Multiple Columns Using Floats

11

NOTES

This one requires a bit more explanation, so we’ll look at how it’s done one
step at a time.

In the markup, we see that main comes first, presumably because it is the
most important content, and #links comes last. The whole page is wrapped
in a div (#wrapper) so that it can be set to a specific width (960px). In the
layout, however, the order of the columns from left to right is #links (200px
wide), main (520px wide), then #news (200px wide). This layout has 20 pixels
of space between columns.

The first step to getting there is moving the main section to the middle posi-
tion by applying a left margin that pushes it over enough to make room for
the left column (200px) plus the space between (20px); so, margin-left:
220px. While we’re at it, we’ll add a 20px right margin on main as well to
make room on its right side. FIGURE I shows how the page looks after we
apply styles to main.

Next—and this is the cool part—pull the content that you want to go in the
left column (#links, in this case) to the left by using a negative margin value.
The trick is figuring out how far to the left it needs to be moved. If you look
at FIGURE I, you can see a ghostly version of #links that shows where it wants
to be if the #wrapper were wide enough. I find it useful to look at the layout
in that way because it makes it clear that we need to pull #links to the left by
the widths of all the element boxes ahead of it in the source.

FIGURE I. The layout after margins are applied to the middle (main) column element.
The shaded box on the right shows where #links would like to be if it weren’t forced
under #news.

Multiple Columns Using Floats

12 Learning Web Design, 5e

In this example, the element box width for main is 520px + 220px for the left
margin + 20px for the right margin, for a total of 760 pixels. The total width
of #news is 200px (no margins are applied). That means that the #links div
needs to be pulled a total of 960 pixels to the left to land in the left-column
slot (margin-left: -960px;). When the negative margin is applied, #links
slides into place, and we have the final layout shown in FIGURE H.

If we wanted the #news div to be in the left column (FIGURE J), we’d take the
same approach: float all the elements to the left, give the #main element a
wide left margin (220px), and then use a negative margin to pull #news to the
left. The left margin on #news needs to be -760px (220 + 520 + 20) to move it
across the width of the #main element and its two side margins.

FIGURE J. Floating the News div to the left column with a margin of –760px.

POSITIONED LAYOUT

I think we’ve got floated columns covered. The other way to create columns
in a layout is to use absolute positioning. In this section, we’ll use positioning
to arrange three columns in both fluid and fixed-width pages.

Note that in both examples, I have omitted the footer element. I’ve done
this for a couple of reasons. First, when you position all of the elements in a
layout, as we will in these examples, they no longer “participate in the layout,”
which means there is nothing to hold a footer at the bottom of the page. It
rises right up to the top. There are solutions to this problem using JavaScript,
but they are beyond the scope of this article.

But say we position only the two side columns and let the main center col-
umn stay in the flow to hold the footer down. This is certainly a possibility,
but if either of the side columns grows longer than the center column, it will
overlap the footer content. Between leaping footers and potential overlaps, it’s
just kind of messy, which is why I’ve chosen to omit the footer here (and why
floats are the more popular layout technique).

WARNING

When you are doing this on your own,
remember to include padding and bor-
ders into the total element box width
calculations as well, unless you are using
the border-box box-sizing model.

Page Layout with Floats and Positioning

Positioned Layout

13

Three Columns, Positioned, Fluid Layout
This layout uses percentage values to create three flexible columns. The
resulting layout is shown in FIGURE K.

Source order Layout

header

main

#news

#links

#content

FIGURE K. Three positioned, fluid columns.

THE STRATEGY

Wrap the three sections (main, #news, #links) in a div (#content) to serve as
a containing block for the three positioned columns. Then give the column
elements widths and position them in the containing #content element.

THE MARKUP

<header>Masthead and headline</header>

<div id="content">

 <main>Main article</main>

 <div id="news">News items</div>

 <div id="links">List of links</div>

</div>

THE STYLES

#content {
 position: relative;
 margin: 0;
}

Positioned Layout

14 Learning Web Design, 5e

main {
 width: 50%;
 position: absolute;
 top: 0;
 left: 25%;
 margin: 0;
}
#news {
 width: 20%;
 position: absolute;
 top: 0;
 left: 2.5%;
 margin: 0;
}
#links {
 width: 20%;
 position: absolute;
 top: 0;
 right: 2.5%;
 margin: 0;
}

NOTES

I think that you’ll find the styles for this layout to be fairly straightforward.

• I created the #content containing block to position the columns because
we want the columns to always start below the header. If we positioned
them relative to the browser window (the initial containing block), they
may be in the wrong spot if the height of the header should change, such
as the result of the h1 text changing size. Make the #content div a contain-
ing block by applying the declaration position: relative.

• The main element is given a width of 50%, and absolute positioning is
used to place it at the top of the #content div and 25% from the left edge.
This will accommodate the 20% width of the left column plus the 2.5%
space that serves as a margin to the left and right of it.

• The #news div is positioned at the top of the #content div and 2.5% from
the left edge (top: 0; left: 2.5%;).

• The #links div is positioned at the top of the #content div and 2.5% from
the right edge (top: 0; right: 2.5%;). No need to calculate the position
from the left edge…just put it on the right! Note that we could have posi-
tioned the #news and #links columns flush against their respective edges
and used padding to make a little space on the sides. There are usually
multiple ways to approach layout goals.

• The only trick to getting this right is making sure your width and margin
measurements do not exceed 100%. You may need to factor in padding
and borders as well.

Page Layout with Floats and Positioning

Positioned Layout

15

Three Columns, Positioned, Fixed
If you have a use case that requires pixel-level control over your positioned
layout, that’s pretty easy to do, as we’ll see in this example (FIGURE L). It dif-
fers from the previous fluid example in that the whole page is contained in
a #wrapper so it can be fixed and centered, and pixel values are used for the
measurements. To save space, I’ll just show you the resulting styles here. The
markup and positioning strategy are the same.

Source order Layout

header

main

#news

#links

#content

#wrapper

FIGURE L. Three positioned columns in a centered, fixed-width page.

THE STYLES

#wrapper {
 width: 960px;
 margin: 0 auto;
}
#content {
 margin: 0;
 position: relative;
}
main {
 width: 520px;
 position: absolute;
 top: 0;
 left: 220px;
 margin: 0;
}

#news {
 width: 200px;
 position: absolute;
 top: 0;
 left: 0;
 margin: 0;
}
#links {
 width: 200px;
 position: absolute;
 top: 0;
 right: 0;
 margin: 0;
}

Positioned Layout

16 Learning Web Design, 5e

TOP-TO-BOTTOM COLUMN
BACKGROUNDS

Adding color to columns is an effective way to emphasize the division of
information and bring a little color to the page. But if you look at the dashed
borders in all the screenshot examples we’ve seen so far, you’ll see that col-
umn elements often stop well before the bottom of the page. This is one dis-
advantage of using floats and positioning for columns. If you want to apply
backgrounds from top to bottom in columns, you need to get tricky and use
tiling background images in a technique known as “faux columns.”

The Faux-Columns Hack
Where there’s a will, there’s a way, and that has certainly been true in web
development. Undeterred by the fact that there was no way to make floated
columns fill the height of the page, developers devised a hack to make them
look like they do. The faux-columns technique uses a wide, thin image with
bands of color that correspond to each column. The image tiles vertically in
the background of the container that holds the layout, and the columns of
content appear in the foreground.

The faux-columns trick is easier to apply to fixed-width layouts, so we’ll start
there (we’ll get to fluid column backgrounds in a moment). FIGURE M shows
an image, two_columns.png, applied to a fixed-width, two-
column layout. I’ve made two_columns.png thick enough
that you can see it in the figure, but you could create the
image at only 1 pixel high to keep its file size at a mini-
mum and you’d get the same effect.

#wrapper {
 width: 960px;
 margin: 0 auto;
 background-image: url(two_columns.png);
 background-repeat: repeat-y;
}

You may recognize the layout in FIGURE M as the two-
column, fixed-centered layout we made earlier in FIGURE

D. This time, it has the two_columns.png graphic tiling
vertically in the #wrapper element.

T I P

If your layout lacks a footer element to hold the container
element open after the columns are floated, apply overflow:
hidden; to the #wrapper to make it stretch around the floats.

NOTE

The problem of uneven columns is solved
in CSS Grid and Flexbox, where you can
stretch items to fill the available height.

two_columns.png

FIGURE M. A tiling background image creates a colored
column effect.

Page Layout with Floats and Positioning

Top-to-Bottom Column Backgrounds

17

Faux Columns for Fluid Layouts
Now that you understand the basic technique, you may be wondering how
to make it work for columns with flexible widths. The secret is a really, really
wide background graphic and the background-position property.

We may not know the exact width of the columns in a fluid layout, but we do
know the point at which the columns are divided. Let’s use the two-column
fluid example from FIGURE B as an example. The column division occurs
67.5% from the left edge (5% left margin + 60% main column width + 2.5%,
which is half of the 5% space between margins).

In your image editor of choice, create a horizontal image that is wider than
any monitor is likely to go—5,000 pixels ought to do it. Because the graphic
needs to be only a few pixels high and is likely to be made up of a few flat col-
ors, the file size should stay pretty small. When you create the column colors,
make sure they match the proportion of your columns. In our example, the
left-column background should fill 67.5% of the width of the graphic (67.5%
× 5,000 = 3,375 pixels).

Apply the wide image as a background pattern to the body element, and
use background-position to align the point where the color changes in the
graphic (67.5%) with the point where the columns divide on the page (also
67.5%). In that way, the column break in the image will always be centered
in the space between the columns (FIGURE N). And there you have it—faux
columns that expand and contract with the column widths.

body {
 background-image: url(two_cols_5000px.png);
 background-repeat: repeat-y;
 background-position: 67.5%;
}

background-position: 67.5%
two_cols_5000px.png

FIGURE N. The background image is anchored at the point between the two
columns, so when the browser window gets larger or smaller, it is always in the right
place. The graphic file is wide enough that there will be enough image to fill both
columns, even on the widest of browsers.

Top-to-Bottom Column Backgrounds

18 Learning Web Design, 5e

Three Faux Columns
Well, that works for two columns, but what about three? It is certainly pos-
sible with the help of multiple background images.

Fundamentally, the process is the same as the one we just saw: position a real-
ly wide background graphic proportionally in a container div. But for three
columns, you position two background images. One image provides the color
band for the left column, and the remaining right portion is transparent. A
second image provides the color for the right column, with its left portion
remaining transparent (FIGURE O). The background color of the page shows
through the transparent areas and provides the color for the middle column.

The markup requires a container (#wrapper) wrapped around the columned
portion of the layout:

<div id="wrapper">
 <main></main>
 <div id="news"></div>
 <div id="links"></div>
</div>

The left-column graphic goes in #wrapper, positioned at the point between
the left and center columns (26.25% for the example in FIGURE O). The right-
column graphic is positioned between the center and right columns (73.75%).
When the browser window resizes, the background images stay put at their
proper point between columns, and the background color fills in the space
in between.

#wrapper {
 background-image: url(left_column_bkgd.png), url(right_column_bkgd.
png);
 background-repeat: repeat-y, repeat-y;
 background-position: 26.25%, 73.75%;
}

BROWSER SUPPORT NOTE

Multiple background images do not work
on Internet Explorer 8 and earlier. If your
site traffic demands that you support
these old browsers, you can use Doug
Bowman’s “Liquid Bleach” trick from
way, way back in 2004 (stopdesign.com/
archive/2004/09/03/liquid-bleach.html).

le�_column.png background-position: 26.25%

right_column.png background-position: 73.25%

FIGURE O. Faux columns for a fluid, three-column layout.

Page Layout with Floats and Positioning

Top-to-Bottom Column Backgrounds

19

A FEW LAST WORDS

That wraps up our tour of column layout techniques. Once you get the hang
of floating elements, using margins to make room for them, and using nega-
tive margins to pull things to the left in the layout, you’ve pretty much got
all the tools you need to make columns in fixed or fluid layouts using floats.
Positioning is even more straightforward once you get comfortable with the
position properties.

A few words of caution: make sure that your widths and margins do not
exceed 100% of the viewport or other container. If you are using the content-
box box-sizing model, you’ll have to account for padding and borders in the
total width as well, which may be a good motivation to set box-sizing to
border-box for the whole page.

Finally, be careful when combining percentage and pixel or em measure-
ments (for example, a 50% wide column with 20px margin). Browsers may
round percentages differently, potentially causing “float drop” if they round
up higher than the available width of the browser.

And again, the techniques in this article are antiquated and should be used
only as fallbacks for browsers that don’t support CSS Grid and Flexbox.
One day, they will join tables and 1-pixel transparent GIFs (see Note) in the
Museum of Hilarious Web Design Hacks.

NOTE

Before style sheets, one method to add
space on a web page was to place a
transparent 1 × 1 pixel GIF on the page
with an img element, then give it a width
and height to hold that amount of space
clear. Can you believe it?! Aren’t you glad
you’re learning web design in the Age
of CSS?

A Few Last Words

20 Learning Web Design, 5e

